Introduction

A Standard Driven Software Architecture for Fully Autonomous Vehicles

Alex Serban!2 Erik Poll! Joost Visser!-?

I Radboud University
Nijmegen, The Netherlands

E-mail: {a.serban, erikpoll} @cs.ru.nl

2 Software Improvement Group
Amsterdam, The Netherlands

E-mail: {a.serban, j.visser}@sig.eu

Abstract

The development of self driving cars is often regarded as adding a layer of intelligence on top of classic
vehicle platforms. However, the amount of software needed to reach autonomy will exceed the software
deployed for operation of normal vehicles. As complexity increases, the demand for proper structure
also increases. Moreover, the shift from open, deterministic components to more opaque, probabilistic
software components raises new challenges for system designers. In this paper we introduce a functional
software architecture for fully autonomous vehicles aimed to standardize and ease the development pro-
cess. Existing literature presents past experiments with autonomous driving or implementations specific
to limited domains (e.g. winning a competition). The architectural solutions are often an after-math of
building or evolving an autonomous vehicle and not the result of a clear software development life-cycle.
A major issue of this approach is that requirements can not be traced with respect to functional com-
ponents and several components group most functionality. Therefore, it is often difficult to adopt the
proposals. In this paper we take a prescriptive approach starting with requirements from a widely adopted
automotive standard. We follow a clear software engineering process, specific to the automotive indus-
try. During the design process, we make extensive use of robotic architectures — which seem to be often
ignored by automotive software engineers — to support standard driven requirements.

Keywords: Intelligent vehicles, Autonomous vehicles, Robotics, Software architecture

Autonomous driving is no longer a lab experiment.
As manufacturers compete to raise the level of ve-
hicle automation, cars become highly complex sys-
tems. Driving task automation is often regarded as
adding a layer of cognitive intelligence on top of
1

basic vehicle platforms While traditional me-

chanical components become a commodity 2 and
planning algorithms become responsible for critical

decisions, software emerges as the lead innovation
driver. Recent trends forecast an increase in traffic
safety and efficiency by minimising human involve-
ment and error . The transfer of total control from
humans to machines is classified by the Society of
Automotive Engineers (SAE) as a stepwise process
on a scale from O to 5, where 0 involves no automa-
tion and 5 means full-time performance by an auto-
mated driving system of all driving aspects, under

all roadway and environmental conditions 3. Since

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

the amount of software grows, there is a need to use
advanced software engineering methods and tools to
handle its complexity, size and criticality. Software
systems are difficult to understand because of their
non-linear nature - a one bit error can bring an entire
system down, or a much larger error may do noth-

ing. Moreover, many errors come from design flaws

or requirements (miss-) specifications 4

Basic vehicles already run large amounts of soft-
ware with tight constraints concerning real-time pro-
cessing, failure rate, maintainability and safety. In
order to avoid design flaws or an unbalanced rep-
resentation of requirements in the final product, the
software’s evolution towards autonomy must be well
managed. Since adding cognitive intelligence to ve-
hicles leads to new software components deployed
on existing platforms, a clear mapping between
functional goals and software components is needed.

Software architecture was introduced as a means
to manage complexity in software systems and help
assess functional and non-functional attributes, be-
fore the build phase. A good architecture is known
to help ensure that a system satisfies key require-
ments in areas such as functional suitability, perfor-
mance, reliability or interoperability D,

The goal of this paper is to design a functional
software architecture for fully autonomous vehicles.
Existing literature takes a descriptive approach and
presents past experiments with autonomous driving
or implementations specific to limited domains (e.g.
winning a competition). The architectural solutions
are therefore an after-math of building or evolving
an autonomous vehicle and not the result of a clear
software development life-cycle. A major issue of
this approach is that requirements can not be traced
with respect to functional components and several
components group most functionality. Therefore,
without inside knowledge, it is often not straight for-
ward to adopt the proposals.

In this paper we take a prescriptive approach
driven by standard requirements. We use require-
ments from the SAE J3016 standard, which defines
multiple levels of driving automation and includes
functional definitions for each level. The goal of
SAE J3016 is to provide a complete taxonomy for
driving automation features and the underlying prin-

ciples used to evolve from none to full driving au-
tomation. At the moment of writing this paper, it is
the only standard recommended practice for build-
ing autonomous vehicles. We provide an extensive
discussion on the design decisions in the form of
trade-off analysis, which naturally leads to a body
of easily accessible distilled knowledge. The current

proposal is an extension of our prior work 0

The term functional architecture is used analo-
gous to the term functional concept described in the
ISO 26262 automotive standard 2+ 1: a specification
of intended functions and necessary interactions in
order to achieve desired behaviours. Moreover, it is
equivalent to functional views in software architec-
ture descriptions; which provide the architects with
the possibility to cluster functions and distribute
them to the right teams to develop and to reason
about them #. Functional architecture design corre-

sponds to the second step in the V-model 7 8, a soft-
ware development life cycle imposed by the manda-
tory compliance to ISO 26262 automotive standard.

We follow the methodology described by

Wieringa 9 as the design cycle; a subset of the en-
gineering cycle which precedes the solution imple-
mentation and implementation evaluation. The de-
sign cycle includes designing and validating a solu-
tion for given requirements.

The rest of the paper is organised as follows.
In Section [2| we introduce background information.
In Section (3| we infer the requirements from the
SAE J3016 standard. In Section |4 we present the
reasoning process that lead to a solution domain.
The functional components are introduced in Sec-
tion [followed by component interaction patterns
in Section [] and a general trade-off analysis in Sec-
tion[Zl A discussion follows in Section[8] In Section
[9] we compare the proposal with related work and
conclude with future research in Section [0l

2. Background

The development of automotive systems is dis-
tributed between vehicle manufacturers, called
Original Equipment Manufacturers (OEM), and
various component suppliers - leading to a dis-
tributed software development life cycle where the

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

OEM play the role of technology integrators. This
development process allows OEM to delegate re-
sponsibility for development, standardisation and
certification to their component suppliers. The same
distributed paradigm preserves, at the moment, for
component distribution and deployment inside a ve-
hicle; where no central exists.

Instead, embedded systems called Electronic
Control Units (ECU) are deployed on vehicles in
order to enforce digital control of functional as-
pects such as steering or brakes. Many features re-
quire interactions and communications across sev-
eral ECUs. For example, cruise control needs to
command both the breaking and the steering system
based on the presence of other traffic participants. In
order to increase component reuse across systems,
manufacturers and vendors developed a number
of standardised communication buses (e.g. CAN,
FlexRay) and software technology platforms (AU-
TOSAR) that ease communication and deployment
between distributed components. We are hereby
concerned with designing functional software com-
ponents which are deployed on ECUs and are re-
quired to exchange information over one or many
communication buses. Standardised interfaces (such
as the ones defined in AUTOSAR) help ease the
development and communication between software
components, however, they do not have a big impact
on their core functionality.

As mentioned in Section [I, SAE J3016 is a
standard that defines multiple levels of automation,
sketching an incremental evolution from no automa-
tion to fully autonomous vehicles. The purpose of
the standard is to be descriptive and broad about this
evolution, but it does not provide strict requirements
for it. However, at the moment, it is the most com-
prehensive. widely adopted, document that drives
this evolution. Given its wide adoption, we use it as
a baseline for our approach: vehicles should satisfy
at least the functions described by this standard in
order to qualify for automation. With the goal of
understanding the vehicle automation process, we
first introduce the most important terms as defined

by SAE J3016 2"

o Dynamic Driving Task (DDT) - real-time opera-
tional and tactical functions required to operate a
vehicle, excluding strategic functions such as trip
scheduling or route planning. DDT is analogous
to driving a car on a predefined route and includes
actuator control (e.g. steering or braking) and tac-
tical planning such as generating and following
a trajectory, keeping the vehicle within the lanes,
maintaining distance from other vehicles, etc.

o Driving automation system - hardware and soft-
ware systems collectively capable of performing
some parts or all of the DDT on a sustained ba-
sis. Driving automation systems are usually com-
posed of design-specific functionality called fea-
tures (e.g. automated parking, lane keep assis-
tance, etc.). The interplay between hardware and
software was described earlier. We are currently
interested in the interplay between software com-
ponents in order to design driving automation sys-
tems capable to achieve full autonomy.

o Operational Design Domains (ODD) - the spe-
cific conditions under which a given driving au-
tomation system or feature is designed to function.
Defining an operational domain is an important
task during the design phase, as the requirements
change in relation to it. For example, a vehicle
which should operate in sunny weather in a lim-
ited area of a city has different requirements than
a vehicle which should operate in winter condi-
tions, on mountain roads. As will be discussed
later, full autonomy requires a vehicle to operate
without intervention in all weather and traffic con-
ditions.

« DDT fall-back - the response by the user or by an
Automated Driving System (ADS) to either per-
form the DDT task or achieve a safety state after
occurrence of a DDT performance-relevant sys-
tem failure or upon leaving the designated ODD.

o DDT fall-back-ready user - the user of a vehi-
cle equipped with an engaged ADS feature who
is able to operate the vehicle and is receptive to
ADS-issued requests to intervene and to perform
any if not all of the DDT tasks during a system
failure or when an automated vehicle requests it.

« DDT feature - a design-specific functionality at a
specific level of driving automation with a partic-

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

ular ODD. A feature can be seen as a specific
hardware or software component that is performs
a driving automation task in a predefined domain.
We may think of lane assistance in sunny weather
as a DDT feature.

Besides hardware constraints, full vehicle automa-
tion involves the automation of the DDT in all ODD,
by developing a driving automation system. Re-
cursively, driving automation systems are composed
of design-specific features. In this sense, complete
vehicle automation is seen as developing, deploy-
ing and orchestrating enough DDT features in order
to satisfy all conditions (ODDs) in which a human
driver can operate a vehicle (safely).

Human driver

5 N
+ Q & o o
E Automated system <~°q&\‘o.\o° '\@(‘.&b & & o“‘\ a & o
c%a\:é@% ‘Si:éf\“’oé\ q’*ﬁi“i&@ e
¥ & F0) o
$
NO 0 0 0
AUTOMATION R R R LMITED
.8
g9
=g DRIVER .K] 0
<% ASSISTANCE R R UMITED
ES -
£5
E PARTIAL 0 ®
AUTOMATION K K LIMITED
c CONDITIONAL ®
g AUTOMATION R LMITED
L5
AR
oS
£2 HIGH
T AUTOMATION LIMITED
-5
32
T 5
EE FULL
E AUTOMATION

Fig. 1. SAE J3016 levels of driving automation.

The SAE classification of driving automation for
on-road vehicles, showcased in Figure [T} is meant
to clarify the role of a human driver, if any, during
vehicle operation. The first discriminant condition
is the environmental monitoring agent. In the case
of no automation up to partial automation (levels 0-
2), the environment is monitored by a human driver,
while for higher degrees of automation (levels 3-5),
the vehicle becomes responsible for environmental
monitoring.

Another discriminant criteria is the responsibil-
ity for DDT fall-back mechanisms. Intelligent driv-

ing automation systems (levels 4-5) embed the re-
sponsibility for automation fall-back constrained or
not by operational domains, while for low levels of
automation (levels 0-3) a human driver is fully re-
sponsible.

According to SAE:

« If the driving automation system performs the lon-
gitudinal and/or lateral vehicle control, while the
driver is expected to complete the DDT, the divi-
sion of roles corresponds to levels 1 and 2.

« If the driving automation system performs the en-
tire DDT, but a DDT fall-back ready user is ex-
pected to take over when a system failure occurs,
then the division of roles corresponds to level 3.

« If a driving automation system can perform the
entire DDT and fall-back within a prescribed
ODD or in all driver-manageable driving situation
(unlimited ODD), then the division of roles corre-
sponds to levels 4 and 5.

3. Requirements Inference

The process of functional architecture design starts
by developing a list of functional components and
their dependencies @. Towards this end, SAE J3016
defines three classes of components:

« Operational - basic vehicle control,

« Tactical - planning and execution for event or ob-
ject avoidance and expedited route following, and

« Strategic - destination and general route planning.

Each class of components has an incremental role
in a hierarchical control structure which starts from
low level control, through the operational class and
finishes with a high level overview through the
strategic class of components. In between, the tac-
tical components handle trajectory planning and re-
sponse to traffic events. This hierarchical view upon
increasing the level of vehicle automation is an im-
portant decision driver in architecture design.

Later, the SAE definition for DDT specifies, for
each class, the functionality that must be automated
in order to reach full autonomy (level 5):

« Lateral vehicle motion control via steering (oper-
ational).

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

» Longitudinal vehicle control via acceleration and
deceleration (operational).

o Monitoring of the driving environment via ob-
ject and event detection, recognition, classifica-
tion and response preparation (operational and
tactical).

« Object and event response execution (operational
and tactical).

o Manoeuvre planning (tactical).

« Enhanced conspicuity via lighting, signalling and
gesturing, etc. (tactical).

Moreover, an level 5 vehicle must ensure DDT fall-
back and must implement strategic functions, not
specified in the DDT definition. The latter consists
of destination planning between two points provided
by a human user or received from an operational
center.

An overview of the hierarchical class of compo-
nents defined is illustrated in Figure[2| The level of
complexity increases from left to right - from oper-
ational to strategic functions.

Tactical functions Operational functions DDT

Lateral
vehicle Vehicle

motion motion
control

Longitudinal
vehicle

motion
control

Basic vehicle motion control

Planning and execution for event/object
avoidance and expedited route following

Route and destination timing and selection

Fig. 2. Functional component classification according to
SAE 3016
Although not exhaustive, the list of compo-
nents and their intended behaviour, as specified by
SAE J3016, represents a good set of initial require-
ments. It is the choice of each OEM how any of
the intended functionality will be implemented. For
example, different algorithms or software systems
could be used to implement object detection, recog-
nition and classification. This choice can impact the
final set of functional components because one OEM
can choose to use multiple sensors and powerful sen-
sor fusion algorithms, while other OEM can build a
single component that can handle all tasks. In this

paper, we strive to divide each function into atomic
components. If any of these pieces will be combined
in higher level components, it won’t have any im-
pact on this proposal. An in-depth analysis of such
trade-offs, often driven by the distributed software
development life-cycle, is presented in Section

We briefly remind that the automation of any task
is a control loop which receives input from sensors,
performs some reasoning and acts upon the environ-
ment (possibly through actuators) 10 The automa-
tion of complex tasks requires a deeper (semantic)
understanding of sensor data in order to generate
higher order decisions or plans. However, the loop
behaviour is preserved. This analogy holds for the
SAE classification of functional components illus-
trated in Figure Each class of components can
be implemented as a control loop which receives in-
put from sensors and acts accordingly. From left
to right - from operational to strategic functions -
the level of semantic knowledge needed in order to
make a decision increases. Moreover, as we move
further from left to right, the components do not
control actuators anymore, but other components.
For example, tactical components will send com-
mands to operational components. Similarly, strate-
gic functions can not directly act upon actuators,
but communicate with tactical functions, which will
later command operational functions.

Thus we can regard each class of components as
a big loop - illustrated in Figure |2| - and each com-
ponent in each class as a smaller loop because each
component will require certain semantic information
and not all the information available at class level.
We will exploit this behaviour in the following sec-
tion.

4. Rationale

Software architecture design for autonomous vehi-
cles is analogous to the design of a real-time, intel-
ligent, control system - aka a robot. Although we
can find considerably literature concerning software
architecture in the field of robotics and artificial in-
telligence LI2HLSUT4LLSUL6! 17, these proposals
seem to be overlooked by automotive software en-
gineers. Therefore, many reference architectures for

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

autonomous vehicles miss developments and trade-
offs explored in the field of robotics - as we will
shall see in Section [9] We aim to bridge this gap
in this section, by discussing the most important de-
velopments in the field of robotics and select the best
choices for the automotive domain.

For a long time, the dominant view in the
Al community was that a control system for au-
tonomous robots should be composed of three func-
tional elements: a sensing system, a planning sys-
tem and an execution system 18 This view led to
the ubiquitous sense-plan-act (SPA) paradigm. For
planning, a system typically maintains an internal
state representation, which allows it to position itself
in the environment and plan next actions. Because
this model has to be up-to-date and accurately reflect
the environment in which a robot operates, it might
require a lot of information. As the operational envi-
ronment becomes more complex, the complexity of
the internal representation also increases, increasing
the time needed to plan the next steps. Therefore, in
fast changing environments, new plans may be obso-
lete before they are deployed. Moreover, unexpected
outcomes from the execution of a plan stem may
cause the next plan steps to be executed in an ap-
propriate context and lead to unexpected outcomes.

One question that naturally stood up from these
shortcomings is ”how important is the internal state
modelling?”. In order to answer this question,
several definitions meant to achieve similar goals
were proposed. Maes LU gt distinguishes between
behaviour and knowledge based systems - where
knowledge-based systems maintain an internal state
of the environment, while behaviour-based systems
do not 1L Similarly, the literature distinguishes be-
tween deliberative and reactive systems, where de-
liberative systems reason upon an internal represen-
tation of the environment and reactive system ful-
fil goals through reflexive reactions to environment
changes LUI4SUI6! Reactive or behaviour based
systems are able to react faster to a changing envi-
ronment, but reason less about it.

We find both definitions to answer the same
questions - how will a system plan its decisions?”
Through reasoning on complex semantic informa-
tion extracted from its sensors or by simple reactions

to simple inputs? Deciding on this is an initial trade-
off between speed of computation and the amount of
environmental understanding a system can have.

When considering the development of au-
tonomous vehicles through these lenses, we can see
that vehicles require both reactive and deliberative
components. Maintaining a pre-defined trajectory
and distance from the objects around a vehicle is an
example of a reactive system, which should oper-
ate with high frequency and be as fast as possible
in order to overcome any environmental change. In
this case, maintaining a complex representation of
the surrounding environment is futile.

However, a decision making mechanism respon-
sible, for example, to overtake the vehicle in front is
an example of a deliberative system. In this case
maintaining a complex world model can help the
system to take a better decision.

For example, one can not only judge the dis-
tances to the surrounding objects, but also the rel-
evance of the decision in achieving the goal. Is it
worth to overtake the car in front if the vehicle must
turn right in a relatively short distance after the over-
take? In order to answer this question a complex
world model that must combine semantic informa-
tion about the overall goal, future states and nearby
objects is needed. Processing this amount of infor-
mation will naturally take a longer time. However,
since the result can only impact the passengers com-
fort (assuming that driving behind a slow car for a
long time is un-comfortable) the system can assume
this processing time.

Gat and Bonnasso 12 first debate the role of in-
ternal state and establish a balance between reac-
tive and deliberative components inside a system. In
their proposal, the functional components are clas-
sified based on their memory and knowledge about
the internal state in: no knowledge, knowledge of
the past, or knowledge of the future - thus resulting
in three layers of functional components. However,
their model does not specify how, or if, the knowl-
edge can be shared between the layers. Moreover, it
is not clear how and if any components incorporate
knowledge about past, future and other static data.

A better proposal, that bridges the gap between
reactive and deliberative components, is the NIST

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

Real Time Control Systems (RCS) reference archi-
tecture introduced by Albus 12] This architecture
does not separate components based on memory, but
builds a hierarchy based on semantical knowledge.

Thus, components lower in the hierarchy have
limited semantic understanding and can generate
inputs for higher components, deepening their se-
mantic knowledge and understanding. Moreover,
RCS has no temporal limitations for a component’s
knowledge. One can hold static or dynamic infor-
mation about past, present or future. Although all
components maintain a wold model, this can be as
simple as reference values, to which the input must
be compared.

We find this proposal a good fit for automotive
requirements and for the functional classification
presented in Section [3] because it allows a balanced
representation of reactive and deliberative compo-
nents and it allows hierarchical semantic process-
ing - one of the requirements given by the classi-
fication of functional components proposed earlier.
Further on, we introduce more details about it and
illustrate it in Figure 3]

At the heart of the control loop for an RCS node
is a representation of the external world — the world
model — which provides a site for data fusion, acts as
a buffer between perception and behaviour, and sup-
ports both sensory processing and behaviour gener-
ation. Depending on the complexity of the task a
node is responsible for, the complexity of the world
model increases. For the simplest tasks, the world
model can be very simple, such as in the case of a
throttle system which only has knowledge about the
velocity of the car and the inputs it receives from
the acceleration pedal. For complex tasks, such as
destination planning, the world model must include
complex information such as the maps for an opera-
tional domain, real-time traffic information, etc.

Sensory processing performs the functions of
windowing, grouping, computation, estimation, and
classification on input from sensors. World mod-
elling can also maintain static knowledge in the form
of images, maps, events or relationships between
them. Value judgment provides criteria for decision
making, while behaviour generation is responsible

for planning and execution of behaviours 12l

Mission
Goal

SENSORY WORLD MODELLING BEHAVIOR
PROCESSING ‘ GENERATOR

VALUE JUDGEMENT |
Task
Classification KNOWLEDGE Knowledge

Estimation N
Computation | [, [Maps Entities]
Grouping
Windowing I I

Planners

1k

Images Events
Executors

internal

Sensors \\Wirld/

Fig. 3. Real time intelligent control systems reference ar-
chitecture 12!

Albus proposed the design for a node in a hierar-
chical control structure, where lower level nodes can
generate inputs for higher level nodes, thus increas-
ing the level of abstraction and cognition. Therefore,
nodes lower in a hierarchy can have a very simplis-
tic world model and behaviour generation functions
and can easily implement reactive components. In
order to keep in line with the example above, we
consider the case of maintaining a distance from an
object in front. A node implementing this function-
ality will only have to keep in the world model block
the distance from the vehicle in front, the reference
distance and the vehicle’s velocity. The behaviour
generation block will decide to issue a braking com-
mand whenever the distance will be too close or
whenever it predicts (using the velocity of the ve-
hicle) that the distance will decrease.

Higher nodes, representing deliberative compo-
nents, can easily be described with the same archi-
tecture. Their world model block will process more
semantic information and generate more complex
behaviours (such as the decision to overtake the ve-
hicle in front in order to increase the overall ride
comfort and optimise the goal).

In this hierarchy, higher nodes consume seman-
tic information extracted by lower nodes. However,
this may not always the case with autonomous ve-
hicles where several nodes, at different hierarchical
levels, can consume the same information. For ex-
ample, the distance from the vehicle in front can be
used by both the reactive and the deliberative com-
ponents introduced earlier. Moreover, several com-

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

ponents at the same hierarchical layer can interact,
as a sequential process.

From an architectural point of view, a sequen-
tial processing stream which follows different, in-
dividual, processing steps is represented through a
pipes and filters pattern 200 The pattern divides a
process in several sequential steps, connected by the
data flow — the output data of a step is the input to
the subsequent step. Each processing step is imple-
mented by a filter component 20,

In its pure form, the pipes and filters pattern can
only represent sequential processes. For hierarchi-
cal structures, a variant of the pattern called fee and
Jjoin pipeline systems is used 20| In this paradigm,
the input from sensors is passed either to a low level
pipeline corresponding to a low level control loop,
to a higher level pipeline or both.

An example is shown in Figure[d} the input from
sensors is fed to different processing pipes. At a low
level of abstraction, pipeline 1 only executes simple
operations and sends the result to actuators.

Pipe

Pipeline 2

Plan Generation

Condition

Pipeline 1

Sensor
Abstraction

Actuator
Abstraction

Fig. 4. Tee and join pipelines architectural pattern.

At higher levels of abstraction, pipeline 2 pro-
cesses more sensor data and generates manoeuvre
plans which are translated to actuator language. A
priority condition will decide which input to send to
the actuators. Alternatives to this patterns will be
further discussed in Sections [6] and [7I At the mo-
ment, we concentrate on the functional decomposi-
tion, which will suggest the nodes in the future ar-
chitecture.

5. Functional Decomposition

We start by introducing the functional components
and, in Section [6] discuss interaction patterns. Fig-
ure [5| depicts the functional components that satisfy
SAE J3016 requirements for fully autonomous ve-
hicles. The data flows from left to right; from the

sensors abstraction to actuator interfaces, simulat-
ing a closed control loop. The figure represents
three types of entities: functional components (blue
boxes), classes of components (light grey boxes),
and sub-classes of components (dark grey boxes).

The proposal maps onto the SAE classification
of functional components, introduced in Section [2}
in the following way: vehicle control and actuators
interface class of components correspond to SAE
operational functions, the planning class of compo-
nents corresponds to SAE tactical functions, and the
behaviour generation class maps to both strategic
and planning class of functions.

Two orthogonal classes, corresponding to data
management and system and safety management,
are depicted because they represent cross-cutting
concerns: data management components implement
long term data storage and retrieval, while system
and safety management components act in parallel
of normal control loops and represent DDT fall-back
mechanisms or other safety concerns.

In the following subsections each class of filters
is discussed together with its components. The last
sub-section discusses the relation with middle-ware
solutions and AUTOSAR.

5.1. Sensor Abstractions

Sensor abstractions provide software interfaces to
hardware sensors, possible adapters and conversion
functionality needed to interpret the data. We distin-
guish two classes of sensors and, respectively, of ab-
stractions: (1) sensors that monitor the internal ve-
hicle state or dynamic attributes (e.g. inertial mea-
surements, speed, etc.) and (2) sensors that monitor
the external environment as required by the SAE re-
quirements.

Environmental monitoring can be based on
RADAR, LIDAR and camera technologies. In the
case of cooperative driving, communication with
other traffic participants is realised through vehicle-
to-everything (V2X). Global positioning (GPS) is
required to localise the vehicle in a map environ-
ment or to generate global routes and is therefore
represented as a separated functional component.

All abstractions concerning the internal vehicle
state are grouped into one functional component, be-
cause the choice is specific to each OEM.

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

Functional Class of Sub-class of
o100 Components Components
Sensors Abstraction Data Management Actuators Interface
RADAR Maps Knowledge Log / Report Audit
Database Database Databases Database
Sensor Fusion World Model Behavior Generation Planning Vehicle Control

LIDAR

Cameras

Road

Object
Detsction

Gilobal Sinks

Positioning

vax

Paositioning

]

Vehicle
Internal
State/
D Vehicle
= State
Variables

Behavior

Generation

Lateral
Control

Lane
Keeping

Lane
Change

Trajectory
Control

Intention
Communi-
cation

Collision
Avoidance

Composition
Functions

System and Safety Management

Safety Safety Emengency
Reasoning Specific Braking -
Functions

Fig. 5. Proposed functional architecture, part I: functional

components.

5.2. Sensor Fusion

Multi-sensor environments generate large volumes
of data with different resolutions. These are often
corrupted by a variety of noise and clutter condi-
tions which continually change because of tempo-
ral changes in the environment. Sensor fusion com-
bines data from different, heterogeneous, sources to
increase accuracy of measurements.

The functional components are chosen with re-
spect to SAE requirements for object and event de-
tection, recognition, and classification. We distin-

guish between static and dynamic objects (e.g. a
barrier, pedestrians) and road objects (e.g. traffic
lights) because they have different semantic mean-
ing. Moreover, local positioning is needed to posi-
tion the vehicle relative to the identified objects and
global positioning is needed for strategic functional-

1ty.

Through sensor fusion, a processing pipeline
gathering information from various sensors such as
RADAR and camera can be defined in order to clas-
sify an object, determine its speed, and add other

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

properties to its description. The distinction men-
tioned earlier between the external environment and
the internal state of a vehicle is preserved in Fig-
ure 5} the first four components process data related
to the external environment, while the internal state
is represented by the last functional component.

5.3. World Model

The world model represents the complete picture of
the external environment as perceived by the vehi-
cle, together with its internal state. Data coming
from sensor fusion is used together with stored data
(e.g. maps) in order to create a complete representa-
tion of the world.

As in RCS architecture, the world model acts as
a buffer between sensor processing and behaviour
generation. Components in this class maintain
knowledge about images, maps, entities and events,
but also relationships between them. World mod-
elling stores and uses historical information (from
past processing loops) and provides interfaces to
query and filter its content for other components.
These interfaces, called data sinks, filter content or
group data for different consumers in order to reveal
different insights. One example heavily used in the
automotive industry is the bird’s eye view. However,
the deployed data sinks remain OEM-specific.

5.4. Behaviour Generation

Behaviour generation is the highest cognitive class
of functions in the architecture. Here, the sys-
tem generates predictions about the environment and
the vehicle’s behaviour. According to the vehi-
cle’s goals, it develops multiple behaviour options
(through behaviour generation) and selects the best
one (behaviour selection). Often, the vehicle’s be-
haviour is analogously to a Finite State Machine
(FSM) or a Markov Decision Process (MDP). The
behaviour generation module develops a number of
possible state sequences from the current state and
the behaviour reasoning module selects the best al-
ternative. Complex algorithms from Reinforcement
Learning (RL) use driving policies stored in the
knowledge database to reason and generate a se-
quence of future states. Nevertheless, the functional

loop is consistent: at first a number of alternative be-
haviours are generated, then one is selected using an
objective function (or policy).

A vehicle’s goal is to reach a given destination
without any incident. When the destination changes
(through a Human Machine Interface (HMI) input),
the global routing component will change the goal
and trigger new behaviour generation. These com-
ponents correspond to the SAE strategic functions.

5.5. Planning

The planning class determines each manoeuvre an
autonomous vehicle must execute in order to satisfy
a chosen behaviour. The path planning and monitor-
ing component generates an obstacle free trajectory
and composes the trajectory implementation plan
from composition functions deployed on the vehicle.
It acts like a supervisor which decomposes tasks,
chooses alternative methods for achieving them, and
monitors the execution. The need to re-use compo-
nents across vehicles or outsource the development
leads the path to compositional functions. These
functions can be thought as DDT features, described
in Section 2] Examples of such functions are: lane
keeping systems or automated parking systems (all,
commercial of-the-shelf deployed products).

Compositional functions represent an instantia-
tion of the RCS architecture; they receive data in-
put from sensor fusion or world modelling through
data sinks, judge its value and act accordingly, send-
ing the outputs to vehicle control. Path planning
and monitoring acts as an orchestrator which decide
which functions are needed to complete the trajec-
tory and coordinate them until the goal is fulfilled or
a new objective arrives. For vehicles up and includ-
ing level 4, which cannot satisfy full autonomous
driving in all driving conditions, the control of the
vehicle must be handed to a trained driver in case
a goal can not be fulfilled. Therefore, this class in-
cludes a driving alert HMI component.

5.6. Vehicle Control

Vehicle control is essential for guiding a car along
the planned trajectory. The general control task is
divided into lateral and longitudinal control, reflect-

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

ing the SAE requirements for operational functions.
This allows the control system to independently deal
with vehicle characteristics (such as maximum al-
lowable tire forces, maximum steering angles, etc.)
and with safety-comfort trade-off analysis. The tra-
Jectory control block takes a trajectory (generated at
the path planning and monitoring level) as input and
controls the lateral and longitudinal modules. The
trajectory represents a future desired state given by
one of the path planning compositional functions.
For example, if a lane-change is needed, the tra-
jectory will represent the desired position in terms
of coordinates and orientation, without any informa-
tion about how the acceleration, steering or braking
will be performed. The longitudinal control algo-
rithm receives the target longitudinal state (such as
brake until 40 km/h) and decides if the action will be
performed by accelerating, braking, reducing throt-
tle, or using the transmission module (i.e. engine
braking). The lateral control algorithm computes
the target steering angle given the dynamic prop-
erties of a vehicle and the target trajectory. If the
trajectory includes a change that requires signalling,
the communication mechanisms will be triggered
through the intention communication module.

5.7. Actuator Interfaces

The actuator interface modules transform data com-
ing from vehicle control layer to actuator com-
mands. The blocks in Figure [5] represent the basic
interfaces for longitudinal and lateral control.

5.8. Data Management

Data will at the centre of autonomous vehicles 21
In spite of the fact that most data requires real-time
processing, persistence is also needed. These con-
cerns are represented using the data management
class of components. Global localisation features
require internal maps storage; intelligent decision
and pattern recognition algorithms require trained
models (knowledge database); internal state report-
ing requires advanced logging mechanisms (logging
database). The logging-report databases are also
used to store data needed to later tune and improve
intelligent algorithms. Moreover, an audit database

keeps authoritative logs (similar to black boxes in
planes) that can be used to solve liability issues. In
order to allow dynamic deployable configurations
and any change in reference variables (e.g. a cali-
bration or a decisional variable) a value reference
database is included.

5.9. System and Safety Management

The system and safety management block handles
functional safety mechanisms (fault detection and
management) and traffic safety concerns. It is an in-
stantiation of the separated safety pattern 22 Wwhere
the division criteria split the control system from the
safety operations. Figure[5|only depicts components
that spot malfunctions and trigger safety behaviour
(internal state monitor, equivalent to a watch dog),
but not redundancy mechanisms. The latter imple-
ment partial or full replication of functional compo-
nents. Moreover, safety specific functions deployed
by the OEM to increase traffic safety are distinctly
represented. At this moment they are an indepen-
dent choice of each OEM.

As the level of automation increases, it is nec-
essary to take complex safety decisions. Starting
with level 3, the vehicle becomes fully responsible
for traffic safety. Therefore, algorithms capable of
full safety reasoning and casualty minimisation are
expected to be deployed. While it is not yet clear
how safety reasoning will be standardised and im-
plemented in future vehicles, such components will
soon be mandatory 23 An overview of future safety
challenges autonomous vehicles face is illustrated

in24, with respect to the separated safety pattern, in
Figure [5] safety reasoning components are separated
from behaviour generation.

5.10. AUTOSAR Context

AUTOSAR is a consortium between OEM and com-
ponent suppliers which supports standardisation of
the software infrastructure needed to integrate and
run automotive software. This paper does not ad-
vocate for or against AUTOSAR. The adoption and
use of this standard is the choice of each OEM.
However, due to its popularity, we consider manda-
tory to position the work in the standard’s con-

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

text. Given AUTOSAR, the functional components
in Figure [3 represent AUTOSAR software compo-
nents. The interfaces between components can be
specified through AUTOSAR’s standardised inter-
face definitions. At the moment, the level of abstrac-
tion presented in this paper does not include soft-
ware interface.

6. Interactions Between Components

As mentioned in Section [the components in Fig-
ure [3] act as a hierarchical control structure, where
the level of abstraction and cognition increases with
the hierarchical level, mapping on the SAE clas-
sification of functional components. Components
lower in the hierarchy handle less complex tasks
such as operational functions, while higher compo-
nents handle planning and strategic objectives (e.g.
global routing or trajectory planning).

We propose the use of pipe-and-filter pattern
for component interactions in flat control structures
(same hierarchical level) and the use of tee-and-join
pipelines to represent the hierarchy. In a hierarchi-
cal design, lower level components offer services to
adjacent upper level components. However, the data
inputs are often the same. A high level representa-
tion of the system, through the tee-and-join pipelines
pattern is illustrated in Figure[6] The grey boxes rep-
resent processing pipelines and the blue ones repre-
sent components classes.

For each component class, a process is analogous
to a pipeline. As example, once a user communi-
cates a final destination, the behaviour generation
process starts. This example is illustrated in Fig-
ure[7] where upon receiving a destination at the HMI
input filter, the global routing filter forwards a route
to the behaviour generation filter. This filter breaks
down the route in actions that have to be taken by
the vehicle in order to reach the destination. The ac-
tions are analogous to states in a FSM. Often, there
are several paths between two states. Further on, the
behaviour selection component will select the best
path between two states and forward it to the plan-
ning process.

World Behavior
Model ieneration

Planning

Vehicle
Control

Sensors
Abstrac-
tion

Actuators
Interface

g gl

Fig. 6. Proposed functional architecture, part II: hierarchi-
cal control structure using tee-and-join pipelines pattern.

Behavior Generation

HMI Route Gilobal Behavior Behavior
Input Routing Generation Selection

User Destination
Input

Planning

Fig. 7. Proposed functional architecture, part III: compo-
nent interaction at class level. The behaviour generation
process.

Moreover, messages received at component level
have to be prioritised. For example, an actuator in-
terface can receive commands from the longitudinal
control component or a safety specific function (e.g.
emergency braking). In order to decide which com-
mand to execute first, the messages must contain a
priority flag. Since this functionality is dependent
on the component’s interface and specific to OEM,
this discussion is limited.

Various alternatives to the chosen interaction pat-
terns will be discussed in the next section.

7. Trade-off Analysis

Software architecture design is often not determin-
istic. Given a set of requirements, different archi-
tects might come to different results. The process of

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

weighting alternatives and selecting the most appro-
priate decisions is called trade-off analysis. Several
decisions in this paper could be taken differently.
Therefore, in this section we present several alter-
natives to our decisions and weight their advantages
and disadvantages.

We will start from the underlying assumption of
this paper — that we can derive a set of valid require-
ments from the SAE J3016 automotive standard. As
mentioned in Section [2] the purpose of this stan-
dard is not to provide a complete definition of au-
tonomy, but rather a minimal illustration of the func-
tions needed in order to achieve it. It is meant to
guide the process, and not exhaustively describe it.
However, we find this information sufficient for our
goals, because any functionality on top of the mini-
mal requirements remains the choice of each OEM.

The second decision to be questioned is the use
of NIST RCS architecture as a reference architec-
ture for our work. An in-depth comparison with
other works was presented in Section[d] however, we
hereby present the trade-offs that come with choos-
ing this reference architecture. Although it has the
power to clearly discriminate between reactive and
deductive components and is general enough to rep-
resent both types of components, this reference ar-
chitecture can be sometimes too complex for simple
nodes.

In order to properly represent simple functions,
from the operational class, one does not need a com-
plex world model or behaviour generator modules.
In some components they might miss altogether.
However, the architecture does not impose any con-
straints on the complexity of the world model. Thus,
with limited world modelling or behaviour gener-
ation module the architecture can easily represent
very simple control loops such as value compara-
tors. Moreover, when compared to other proposals,
this reference model allows each individual nodes
to have a level of reasoning — while in other only
components higher in a hierarchy are responsible for
planning. This comes as a benefit for the automotive
software development life-cycle and for the compo-
sitional functions we represented in the architecture.

We expect OEM to maintain their status of
technology integrators and outsource more complex

functionality to their suppliers — such as complete
lane keeping or collision avoidance systems. These
systems can easily be implemented as RCS nodes
and integrated in the overall architecture.

We find the RCS model broad enough to al-
low the development of complex functionality, but
sometimes too complex for simple functions — a
trade-off that can be easily overcome by simpli-
fying each block of the architecture in the latter
case. A more expressive alternative would be to
propose RCS nodes of different complexity — with
lower level nodes that can replace world modelling
only with value judgement. This decision must be
weighted independently, as it might add clutter and
other trade-offs when deciding which type of node
should one choose for each component.

A third trade-off clearly regards the functional
decomposition. Although we aim to atomically de-
compose every function and represent each sub-
component individually, there is no way to prove this
is the correct way. New market trends foresee the
adoption of system-on-a-chip circuits that integrate
more and more components. Technologies such as
MobilEye 23 2im to group several functions on a
dedicated chip. In such scenarios, sensor abstrac-
tions and fusion layers could be merged. However,
the functions implemented by such circuits will still
resemble our proposal. For example, even though
the sensor abstraction layer compresses to one com-
ponent, all the functionality at the sensor fusion
layer still have to be implemented because static, dy-
namic or road objects detection is absolutely manda-
tory for autonomous driving. Therefore, our atomic
decomposition is able to represent these evolutions.

A fourth trade-off to be considered concerns the
choice for component interaction patterns. Several
alternatives to the tee and join pipelines pattern have
been considered. One clear alternative is to use a
layered architecture — where the functional compo-

nents are grouped in a hierarchy and function calls

can be made from higher layers to lower ones 4

However, this choice will constrain the possible in-
teractions between components, thus limiting the
design. At first, because each layer will encapsu-
late some components, it will be impossible to re-

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

use or re-orchestrate them in other processes. Sec-
ondly, because the function calls at lower layers are
required to come from upper layers, thus limiting
even more the design.

Another alternative is to use a component based
architecture, where all the components rest at the
same hierarchical layer and any component can
communicate with all others. This pattern seems a
better fit for the automotive domain, where different
components are deployed on various ECU and they
communicate through a bus. However, it is unable
to represent hierarchical reasoning.

We argue that the tee and join pattern is equiv-
alent to the component based architecture, but has
the ability to represent hierarchical processes. This
is because from a component, one can easily begin a
new pipeline with any other components. If only the
pipes and filter pattern was considered, than the de-
sign would be much limited. However, by giving the
ability to re-orchestrate filters in different pipelines,
the tee and join pipelines pattern can easily represent
any kind of processes, either flat or hierarchical.

In this scenario one can define flat processes,
similar to component based orchestration, but also
hierarchical processes (similar to the hierarchical
functional classes introduced in Section[3)). The only
thing to consider is a processing priority - which de-
fines which pipelines should execute first.

8. Discussion

Software architects evaluate both the functional suit-
ability of an architecture and non functional proper-
ties such as performance or maintainability 20 In
this paper we are only interested in functional suit-
ability and completeness with respect to SAE J3016
requirements. However, we find of interest to dis-
cuss two other important aspects: the position of the
proposed architecture with respect to (1) the auto-
motive software development life cycle and (2) the
ISO 26262 standard that regulates functional safety.
Later, in Section [9] we provide a comparison with
existing literature.

8.1. Incremental development and component
reuse

The SAE classification presented in Section[2]shows
an incremental transition from partially automated
to fully autonomous vehicles. The functional divi-
sion of software components should respect this in-
cremental transition. Moreover, the OEM software
development life-cycle and preference for outsourc-
ing must be taken into account.

As mentioned in Section 2] DDT automation is
analogous to deploying and orchestrating enough
driving automation features in order to satisfy all
driving conditions (ODD) in which a human can
drive. This assumption employs two development
paths:

1. the deployment of new software components
specific to new DDT features or

2. updating a driving feature with enhanced
functionality.

In Figure 5| new DDT features represent new
compositional functions specific to path planning.
The use of composition functions enables incremen-
tal and distributed development at the cost of in-
creased complexity for path planning and monitor.
These components can be commercial-of-the-shelf
products that can easily be outsourced to tier one
suppliers.

Behaviour generation improvements are solved
through knowledge database updates. The V2X
component interfaces with the external world, there-
fore, updates can be pushed through this component.
In most cases, the updates will target the knowledge
or value reference databases.

8.2. Functional safety

The automotive industry has high functional safety
constraints imposed by the mandatory adherence to
1SO 26262 . The objective of functional safety is
to avoid any injuries or malfunctions of components
in response to inputs, hardware or environmental
changes. Error detection and duplication of safety
critical components are mechanisms suggested by

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

ISO 26262. In this proposal, we represent the func-
tional component specific to error detection, how-
ever, omit to represent any redundancy or duplicated
components.

We also aim to fulfil a gap in the ISO 26262 stan-
dard, with regards to autonomous vehicles: safety
reasoning 24 To this moment it is not clear how
autonomous vehicles will behave in case an acci-
dent can not be avoided and which risk to minimise.
However, it is expected for future safety standards to
include specification for safety behaviour.

9. Related Work

As mentioned in Section {4} the transition to auto-
mated and autonomous vehicles lies at the intersec-
tion between two research fields with a rich his-
tory in software engineering and architecture: au-
tonomous systems and automotive. The basis of the
first field were laid in Section 4} although we ex-
pect many aspects of its evolution to influence the
autonomous vehicles field. The pervasiveness of
cloud computing and communication that inspired
cloud robotics 27 is highly relevant for the automo-
tive field. As vehicles begin to communicate and and
even distributively organize 28. 29, software archi-
tecture plays an important role in satisfying quality
constraints. New architectural paradigms, such as

30

service orientation = are already explored for some

aspects in automotive 31, with little ties to the field
of robotics. Moreover, recent trends in robotic ar-
chitecture adaptation 32 are expected to follow in
the field of automotive.

Communication brings new constraints related to
security and trustworthiness, which have a direct im-
pact on automotive software architecture 33 AL
though security is well studied in computer science,
specialized techniques have been proposed in the
field of robotics 9% 32136, 37, which can be further
extended to autonomous vehicles.

On the different tack, the field of automotive
engineering benefits from a rich history in design-
ing, developing and deploying safety critical sys-
tems able to operate for a long period of time.
Software engineering in the automotive domain has

been recognized very early as playing an impor-
tant role 25859 From there on, each stage of
the software development life-cycle has been stud-
ied and naturally supported the evolution of automo-
tive systems; ranging from requirements engineer-

43| 144

ing 40. 411420 ¢ software assurance or soft-

ware testing 4

Software architecture design and system mod-
eling plays a central role in the development pro-
cess. Research in this direction focused on devel-

oping tools to support architecture design, such as

46l 147

architectural description languages , architec-

ture views 48, 49, architectural standards S0 and
even standardization of architectural styles and in-
terfaces, as in the case of AUTOSAR Sl .

Moreover, automotive engineering has strong

ties with model-driven engineering ~<; in de-
53 54

els PARO07 The impact of tight safety require-
ments on software architecture has also been ana-
lyzed in literature 28119

However, the software needed to increase the
level of autonomy is expected to have a big impact
on all disciplines of automotive software engineer-
ing. At first, the shift from purely deterministic soft-
ware components to probabilistic ones where classi-
cal verification methods do not scale will have a big

veloping -, maintaining and testing mod-

impact in the way software is designed 60, More-
over, well known vulnerabilities of machine learning
algorithms have to be considered early in the design
phase 011162 Next generation automotive architec-
tures take into consideration moving to more cen-
tralized models, with high band Ethernet communi-

cation and networks closer to computer networks 03,

We further focus on literature proposing func-
tional and reference architectures starting with level
3, since level 2 vehicles only automate lateral and
longitudinal control. A historical review of level 2
systems is presented in 04

Behere et al. introduce a functional reference ar-
chitecture intended to level 5 vehicles L. In this pro-
posal, the authors make a clear distinction between
cognitive and vehicle platform functionality, simi-
lar to the classification in tactical and operational

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

SAE classes. However, the functional representa-
tion groups several different functions in common
components. For example, longitudinal and latitudi-
nal control of the vehicle, equivalent to acceleration,
breaking and steering are grouped in only one com-
ponent, although they represent different concerns
and are typically deployed differently.

The decision and control block 1. responsible
for trajectory reasoning, selection and implementa-
tion is equivalent to the behaviour generation and
planning class of components from Figure [5] How-
ever, the authors only define trajectory generation as
a separate component, leading to a rough represen-
tation of functional components. It is not clear how
this block handles all functionality and what type of
decisions it makes; strategic or tactic. For example,
will the same component be responsible for decid-
ing if a vehicle should turn left at the first road-cross,
over-take the car up front and generate a trajectory
for executing all maneuvers? These hierarchical de-
cisions correspond to a transition from strategic to
tactical functions (as indicated by SAE) and should
be awarded separate components. Moreover, impor-
tant components responsible for interactions, such
as HMI, or for environmental understanding, such
as object detection, are ignored from the proposal 1l

A proliferation of competitions in constrained
or unconstrained environments resulted in different
designs of autonomous vehicles. The most popu-
lar one, the DARPA Grand Challenge, started with
autonomous vehicles operating in desert conditions
and later evolved to urban environments (through
the DARPA Urban Challenge). During the first com-
petition, although the environment was challeng-
ing, the behaviour of the vehicle was relatively sim-
ple and could be modeled as a simple state ma-
chine ©3. This is in contrast to challenges posed by
real life traffic scenarios, in which the environment
has higher variability and requires more complex be-
haviours.

Nevertheless, the initial architectures used in the
competition bear similarities with modern architec-
tures for autonomous vehicles. The winning vehicle
used a layer-based architecture as described in Sec-
tion 13, with hierarchical increasing complexity
from sensor interfaces to perception (understanding

the environment) and planning 00 We find a good
representation of the SAE J3016 classes of compo-
nents mentioned in Section [2 although there is a
large overlap between strategic and tactical compo-
nents (a normal consequence of the complexity of
the environment).

An interesting (and unique) architectural choice
is to explicitly represent the components responsi-
ble for data logging and storage, to emphasize the
need to think about data and treat data and software
as the main innovation driver. This early choice rec-
ognizes the need to separate the constraints related
to data storage from the functional components that
may log the data; a perspective often missed in later
architectures.

Given the constrained environment, the proposal
was not concerned with destination routing or any
driving assistance or safety features, such as lane as-
sist or emergency braking. Therefore, the DDT fea-
tures presented are limited, constraining the archi-
tecture’s suitability to more complex environments.
Nonetheless, the work shows a high level of matu-
rity when reasoning about processing pipelines and
task distribution.

The second competition, the Darpa Urban Chal-
lenge, saw increased interest in computer vi-
sion based perception algorithms, but also a bet-
ter representation of behaviour generation func-
tions (07.168,169/167.170), Moreover, an increase in
computing power and centralization can be observed
in all proposals.

Building on the same architecture from the grand
challenge 66, Montemerlo et al. ©? increased the
abstraction of the perception layer to a fusion layer
similar to the one represented in Figure[5] Static and
dynamic obstacle tracking (although constrained to
a list by the complexity of the operational domain)
are now first class citizens of the architecture. Sim-
ilarly, since the vehicle operates in normal road en-
vironments, the importance of local positioning is
recognized.

Several teams focused heavily on computer vi-
sion and threat such algorithms at a different
layer 10, 71, although use fusion as an intermediary
layer between perception and reasoning. The archi-

tecture presented by Patz et al. 10 provide a clear

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

distinction between strategic and functional com-
ponents (through the intelligence and planning lay-
ers) and represents a good fit for the SAE class of
components. Other architectures, such as 08 o 71
have an entangled representation between strategic
and tactical components because they focus on task-
specific components. However, if we abstract from
task-specific components, we can find a balanced
representation of the components suggested by the
SAE standard. What misses is a clear distinction
between the hierarchical levels of abstractions, cor-
responding to the semantic understanding of the en-
vironment needed to perform a task.

For another autonomous vehicles competition
held in Korea, Jo et al. 121130 introduce a more
complex architecture. The proposal comes one step
closer to a general architecture, given broader com-
petition goals. The model contains sensor abstrac-
tions, fusion, behaviour and path planning, vehicle
control and actuator interfaces. In this regard, it rep-
resents similar concerns to Figure [5] without world
modelling and HMI route inputs. Instead, the be-
haviour planning component integrates data com-
ing from sensors in order to generate an execution
plan. Since the goal of the competition was limited,
both localisation and behaviour reasoning compo-
nents are restricted (a finite state machine with only
8 possible states that can stop for a barrier, detect
split road, etc.). The artefact successfully represents
operational and tactical functions. Moreover, Jo et
al. divide, for the first time, the concerns from be-
haviour and from path planning, thus obtaining sev-
eral levels of cognition and control. The study also
reveals important details for in-vehicle ECU deploy-
ment and a mapping to AUTOSAR.

In a different competition, called the Grand Co-
operative Driving Challenge, teams raced to develop
vehicles that can successfully exchange information
and form platoons ISTOUTITS T, Although the
environmental monitoring requires less semantic un-
derstanding, the representation of tactical and oper-
ational function across the proposed architectures is
similar to the division made by SAE J3016. In par-
ticular, the architecture presented in 79 uses the tee-
and-join pipelines patter introduced above.

An important contribution from industry re-

search is the work of Ziegler et al. 14 at Mer-

cedes Benz, later evolved to cooperative driving 15|
Although it has a descriptive purpose, the system
overview is the most similar to the SAE suggestion
and the proposal introduced in this paper. It features
a clear distinction between object recognition, local-
isation, motion planning and vehicle control, anal-
ogous to sensor fusion, behaviour generation, plan-
ning and vehicle control in Figure[5| Another impor-
tant contribution is the representation of data storage
functionality for digital maps and reactive compo-
nents such as emergency braking.

Overall, we observe two approaches in the lit-
erature: (1) a high level overview of system com-
ponents where the functionality is not clearly di-
vided and (2) proofs-of-concept from experiments
with autonomous features or competition with lim-
ited operational domain. The lessons learned from
participating in different competitions are very valu-
able. Most architectures considered here have a
large overlap with the SAE J3016 description and
classes of functions, with the current proposal and
between themselves. The overlap between them-
selves reveals an intrinsic set of components without
which autonomy will not be possible. They repre-
sent the least can be done to automate some func-
tions. The disadvantage of developing with concrete
scenarios in mind is the lower level of abstraction
needed to develop a reference architecture.

In this paper we try to overcome this advan-
tage using a standard driven and more fine-grained
functional decomposition. Several other constraints,
such as the automotive software development life-
cycle or the role of the OEMs are taken into account,
leading to a more general proposal. Moreover, since
the ultimate goal is to achieve level 5 autonomy, the
functional decomposition takes into account the se-
mantics of the information consumed, which natu-
rally leads to incremental, hierarchical, abstractions.

10. Conclusions and Future Research

We introduce a functional software architecture for
fully autonomous vehicles. Since the automotive in-
dustry is highly standardised, we follow the func-
tional requirements from an automotive standard

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

which defines multiple levels of driving automation
and includes functional definitions for each level.

During the architecture design, we aim to respect
the incremental development process of autonomous
vehicles and the distributed software development
process specific to the automotive industry. The final
artefact represents an automotive specific instantia-
tion of the NIST RCS reference architecture for real-
time, intelligent, control systems. We use the pipe-
and-filter architectural pattern for component inter-
action and the tee-and-join pipeline pattern to repre-
sent a hierarchical control structure. Several trade-
offs and alternative decisions are discussed within
the paper.

Future work might include refinement through
expert opinion. Later steps consider component in-
terface design, a choice for hardware architecture,
functional component distribution across ECUs and
component distribution inside local networks in or-
der to satisfy security requirements.

References

[1] S. Behere and M. Térngren, “A functional ref-
erence architecture for autonomous driving,”
Information and Software Technology, vol. 73,
pp. 136-150, 2016.

[2] M. Broy, “Challenges in automotive software
engineering,” in International Conference on
Software Engineering (ICSE’06), pp. 3342,
ACM, 2006.

[3] Society of Automotive Engineers (SAE),
“J3016,” SAE international taxonomy and defi-
nitions for terms related to on-road motor vehi-
cle automated driving systems,” levels of driv-
ing automation, 2014.

[4] M. Staron, Automotive Software Architectures,
vol. 1. Springer International Publishing, 2017.

[5] D. Garlan, “Software architecture: a roadmap,”
in Conference on The Future of Software Engi-
neering (ICSE’00), pp. 91-101, ACM, 2000.

[6] A. Serban, E. Poll, and J. Visser, “A stan-
dard driven software architecture for fully au-

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

tonomous vehicles,” Proceedings of WASA
Workshop, 2018.

International Organization for Standardization
(ISO), “ISO standard 26262:2011 Road vehi-
cles - Functional safety,” 2011.

N. B. Ruparelia, “Software development life-
cycle models,” ACM SIGSOFT Software En-
ginering Notes, vol. 35, no. 3, pp. 8-13, 2010.

R. Wieringa, “Design science methodology:
principles and practice,” in International Con-
ference on Software Engineering (ICSE’10),
pp. 493-494, ACM, 2010.

R. Horowitz and P. Varaiya, “Control design of
an automated highway system,” Proceedings
of the IEEE, vol. 88, no. 7, pp. 913-925, 2000.

P. Maes, “Behavior-based artificial intelli-
gence,” in Proceedings of the Fifteenth An-

nual Meeting of the Cognitive Science Society,
pp- 74-83, 1993.

J. S. Albus, “The NIST real-time control sys-
tem (RCS): an approach to intelligent systems
research,” Journal of Experimental & Theo-

retical Artificial Intelligence, vol. 9, no. 2-3,
pp. 157-174, 1997.

E. Gat and R. P. Bonnasso, “On three-layer ar-
chitectures,” Artificial intelligence and mobile
robots, vol. 195, p. 210, 1998.

N. Muscettola, G. A. Dorais, C. Fry, R. Levin-
son, and C. Plaunt, “Idea: Planning at the
core of autonomous reactive agents,” in NASA
Workshop on Planning and Scheduling for
Space, 2002.

K. Konolige, K. Myers, E. Ruspini, and A. Saf-
fiotti, “The Saphira architecture: A design for
autonomy,” Journal of Experimental & Theo-

retical Artificial Intelligence, vol. 9, no. 2-3,
pp. 215-235, 1997.

R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Pe-
tras, and H. Das, “The CLARAty architec-
ture for robotic autonomy,” in IEEE Aerospace
Conference, vol. 1, pp. 121-132, IEEE, 2001.

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

“An architectural blueprint for autonomic com-
puting,” tech. rep., IBM, 2006. White paper.
Fourth edition.

N. J. Nilsson, Principles of artificial intelli-
gence. Morgan Kaufmann, 2014.

J. S. Albus and W. Rippey, “Rcs: A reference
model architecture for intelligent control,” in
From Perception to Action Conference, 1994.,
Proceedings, pp. 218-229, IEEE, 1994.

F. Buschmann, K. Henney, and D. C. Schmidt,
Pattern-oriented Software Architecture, vol. 5.
John Wiley & Sons, 2007.

M. Johanson, S. Belenki, J. Jalminger, M. Fant,
and M. Gjertz, “Big automotive data: Lever-
aging large volumes of data for knowledge-
driven product development,” in Big Data (Big
Data), 2014 IEEE International Conference
on, pp. 736741, IEEE, 2014.

J. Rauhamiki, T. Vepsildinen, and S. Kuikka,
“Functional safety system patterns,” in Pro-
ceedings of VikingPLoP, Tampere University
of Technology, 2012.

J.-F. Bonnefon, A. Shariff, and 1. Rahwan,
“The social dilemma of autonomous vehicles,”
Science, vol. 352, no. 6293, 2016.

A. Serban, E. Poll, and J. Visser, “Tactical
safety reasoning. a case for autonomous vehi-
cles.,” Proceedings of Ca2V Workshop, 2018.

N. Mobileye, “Introduces eyeq vision system-
on-a-chip high performance,” Low Cost Break-
through for Driver Assistance Systems, De-
troit, Michigan, 2004.

L. Dobrica and E. Niemela, “A survey on
software architecture analysis methods,” IEEE
Transactions on Software Engineering, vol. 28,
no. 7, pp. 638-653, 2002.

G. Hu, W. P. Tay, and Y. Wen, “Cloud
robotics: architecture, challenges and applica-
tions,” IEEE network, vol. 26, no. 3, pp. 21-28,
2012.

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. C. Serban, E. Poll, and J. Visser, “A secu-
rity analysis of the etsi its vehicular communi-
cations,” in International Conference on Com-
puter Safety, Reliability, and Security, pp. 365—
373, Springer, 2018.

S. Garcia, C. Menghi, P. Pelliccione, T. Berger,
and R. Wohlrab, “An architecture for de-
centralized, collaborative, and autonomous
robots,” in 2018 IEEE International Confer-
ence on Software Architecture (ICSA), pp. 75—
7509, IEEE, 2018.

A. Koubaa, “Service-oriented software archi-
tecture for cloud robotics,” arXiv preprint
arXiv:1901.08173, 2019.

S. Kugele, D. Hettler, and J. Peter, “Data-
centric communication and containerization
for future automotive software architectures,”
in 2018 IEEE International Conference on
Software Architecture (ICSA), pp. 65-6509,
IEEE, 2018.

J. Aldrich, D. Garlan, C. Kistner, C. Le Goues,
A. Mohseni-Kabir, I. Ruchkin, S. Samuel,
B. Schmerl, C. S. Timperley, M. Veloso, et al.,
“Model-based adaptation for robotics soft-
ware,” IEEE Software, vol. 36, no. 2, pp. 83—
90, 2019.

R. Ferrandez, Y. Dajsuren, P. Karkhanis,
M. Fiinfrocken, and M. Pillado, “Modeling the
c-its architectures: C-mobile case study,” in
ITS World Congress, 2018.

V. M. Vilches, L. A. Kirschgens, A. B. Calvo,
A. H. Cordero, R. 1. Pisén, D. M. Vilches,
A. M. Rosas, G. O. Mendia, L. U. S. Juan, I. Z.
Ugarte, et al., “Introducing the robot security
framework (rsf), a standardized methodology
to perform security assessments in robotics,”
arXiv preprint arXiv:1806.04042, 2018.

V. M. Vilches, E. Gil-Uriarte, 1. Z. Ugarte,
G. O. Mendia, R. L. Pisén, L. A. Kirschgens,
A. B. Calvo, A. H. Cordero, L. Apa, and

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

C. Cerrudo, “Towards an open standard for as-
sessing the severity of robot security vulner-
abilities, the robot vulnerability scoring sys-
tem (rvss),” arXiv preprint arXiv:1807.10357,
2018.

B. Dieber and B. Breiling, “Security consid-
erations in modular mobile manipulation,” in
2019 Third IEEE International Conference on
Robotic Computing (IRC), pp. 70-77, 1EEE,
2019.

I. Priyadarshini, “Cyber security risks in
robotics,” in Cyber Security and Threats: Con-
cepts, Methodologies, Tools, and Applications,
pp. 1235-1250, IGI Global, 2018.

M. Broy, 1. H. Kruger, A. Pretschner, and
C. Salzmann, “Engineering automotive soft-
ware,” Proceedings of the IEEE, vol. 95, no. 2,
pp. 356-373, 2007.

A. Pretschner, M. Broy, 1. H. Kruger, and
T. Stauner, “Software engineering for auto-
motive systems: A roadmap,” in Future of
Software Engineering (FOSE’07), pp. 55-71,
IEEE, 2007.

M. Weber and J. Weisbrod, ‘“Requirements
engineering in automotive development-
experiences and challenges,” in Proceedings
IEEFE Joint International Conference on Re-
quirements Engineering, pp. 331-340, 1EEE,
2002.

A. Vogelsang and S. Fuhrmann, “Why feature
dependencies challenge the requirements en-
gineering of automotive systems: An empir-
ical study,” in 2013 21st IEEE International
Requirements Engineering Conference (RE),
pp. 267-272, IEEE, 2013.

M. Staron, “Requirements engineering for au-
tomotive embedded systems,” in Automotive
Systems and Software Engineering, pp. 11-28,
Springer, 2019.

Y. Luo, M. Van den Brand, L. Engelen, and
M. Klabbers, “A modeling approach to support

[44]

[45]

[46]

[47]

[48]

[49]

safety assurance in the automotive domain,”
in Progress in Systems Engineering, pp. 339—
345, Springer, 2015.

N. L. Fung, S. Kokaly, A. Di Sandro, R. Salay,
and M. Chechik, “Mmint-a: a tool for auto-
mated change impact assessment on assurance
cases,” in International Conference on Com-
puter Safety, Reliability, and Security, pp. 60—
70, Springer, 2018.

M. Markthaler, S. Kriebel, K. S. Salman,
T. Greifenberg, S. Hillemacher, B. Rumpe,
C. Schulze, A. Wortmann, P. Orth, and
J. Richenhagen, “Improving model-based test-
ing in automotive software engineering,” in
2018 IEEE/ACM 40th International Confer-
ence on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP),
pp. 172-180, IEEE, 2018.

V. Debruyne, F. Simonot-Lion, and Y. Trin-
quet, “East-adl—an architecture description
language,” in IFIP World Computer Congress,
TC 2, pp. 181-195, Springer, 2004.

Y. Dajsuren, M. van den Brand, A. Serebrenik,
and R. Huisman, “Automotive adls: a study on
enforcing consistency through multiple archi-
tectural levels,” in Proceedings of the 8th inter-
national ACM SIGSOFT conference on Qual-
ity of Software Architectures, pp. 71-80, ACM,
2012.

H. Gronninger, J. Hartmann, H. Krahn,
S. Kriebel, L. Rothhart, and B. Rumpe, “Mod-
elling automotive function nets with views for
features, variants, and modes,” arXiv preprint
arXiv:1409.6628, 2014.

Y. Dajsuren, C. M. Gerpheide, A. Serebrenik,
A. Wijs, B. Vasilescu, and M. G. van den
Brand, “Formalizing correspondence rules for
automotive architecture views,” in Proceed-
ings of the 10th international ACM Sigsoft con-
ference on Quality of software architectures,
pp- 129-138, ACM, 2014.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

M. Broy, M. Gleirscher, S. Merenda, D. Wild,
P. Kluge, and W. Krenzer, “Toward a holistic
and standardized automotive architecture de-
scription,” Computer, vol. 42, no. 12, pp. 98—
101, 2009.

S. Fiirst, J. Mossinger, S. Bunzel, T. Weber,
F. Kirschke-Biller, P. Heitkdmper, G. Kinke-
lin, K. Nishikawa, and K. Lange, “Autosar—a
worldwide standard is on the road,” in /4th In-

ternational VDI Congress Electronic Systems
for Vehicles, Baden-Baden, vol. 62, 2009.

J. Hutchinson, M. Rouncefield, and J. Whittle,
“Model-driven engineering practices in indus-
try,” in Proceedings of the 33rd International

Conference on Software Engineering, pp. 633—
642, ACM, 2011.

J. Wan, A. Canedo, and M. A. Al Faruque,
“Functional model-based design methodology
for automotive cyber-physical systems,” IEEE
Systems Journal, vol. 11, no. 4, pp. 2028—
2039, 2015.

M. Volter, T. Stahl, J. Bettin, A. Haase, and
S. Helsen, Model-driven software develop-
ment: technology, engineering, management.
John Wiley & Sons, 2013.

Y. Dajsuren, M. G. Van Den Brand, A. Sere-
brenik, and S. Roubtsov, “Simulink models
are also software: Modularity assessment,” in
Proceedings of the 9th international ACM Sig-
soft conference on Quality of software archi-
tectures, pp. 99-106, ACM, 2013.

E. Bringmann and A. Kridmer, “Model-based
testing of automotive systems,” in 2008 Ist
international conference on software testing,
verification, and validation, pp. 485493,
IEEE, 2008.

A. Petrenko, O. N. Timo, and S. Ramesh,
“Model-based testing of automotive software:
Some challenges and solutions,” in Proceed-

ings of the 52nd Annual Design Automation
Conference, p. 118, ACM, 2015.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

A. K. Saberi, Y. Luo, F. P. Cichosz, M. van den
Brand, and S. Jansen, “An approach for func-
tional safety improvement of an existing auto-
motive system,” in 2015 Annual IEEE Systems
Conference (SysCon) Proceedings, pp. 277—
282, IEEE, 2015.

A. K. Saberi, E. Barbier, F. Benders, and
M. Van Den Brand, “On functional safety
methods: A system of systems approach,” in
2018 Annual IEEE International Systems Con-
ference (SysCon), pp. 1-6, IEEE, 2018.

A. C. Serban, “Designing safety critical soft-
ware systems to manage inherent uncertainty,”
in 2019 IEEE International Conference on
Software Architecture Companion (ICSA-C),
pp. 246249, 1IEEE, 2019.

A. C. Serban, E. Poll, and J. Visser, “Ad-
versarial examples-a complete characterisa-
tion of the phenomenon,” arXiv preprint
arXiv:1810.01185, 2018.

S. Ray, “Safety, security, and reliability: The
automotive robustness problem and an archi-
tectural solution,” in 2019 IEEE International
Conference on Consumer Electronics (ICCE),
pp. 14, IEEE, 2019.

B. Zheng, H. Liang, Q. Zhu, H. Yu, and C.-
W. Lin, “Next generation automotive architec-
ture modeling and exploration for autonomous
driving,” in 2016 IEEE Computer Society An-
nual Symposium on VLSI (ISVLSI), pp. 53-58,
IEEE, 2016.

A. Khodayari, A. Ghaffari, S. Ameli, and
J. Flahatgar, “A historical review on lateral
and longitudinal control of autonomous vehi-
cle motions,” ICMET, pp. 421429, 2010.

Q. Chen, U. Ozguner, and K. Redmill, “Ohio
state university at the 2004 darpa grand chal-
lenge: developing a completely autonomous
vehicle,” IEEE Intelligent Systems, vol. 19,
no. 5, pp. 8-11, 2004.

S. Thrun, M. Montemerlo, H. Dahlkamp,
D. Stavens, A. Aron, J. Diebel, P. Fong,

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

A.C. Serban, E. Poll, J. Visser / Standard Driven Software Architecture

J. Gale, M. Halpenny, G. Hoffmann, et al.,
“Stanley: The robot that won the darpa grand
challenge,” Journal of field Robotics, vol. 23,
no. 9, pp. 661-692, 2006.

C. Urmson, C. Baker, J. Dolan, P. Rybski,
B. Salesky, W. Whittaker, D. Ferguson, and
M. Darms, “Autonomous driving in traffic:
Boss and the urban challenge,” Al magazine,
vol. 30, no. 2, pp. 17-17, 2009.

S. Kammel, J. Ziegler, B. Pitzer, M. Wer-
ling, T. Gindele, D. Jagzent, J. Schroder,
M. Thuy, M. Goebl, F. v. Hundelshausen, et al.,
“Team annieway’s autonomous system for the
2007 darpa urban challenge,” Journal of Field
Robotics, vol. 25, no. 9, pp. 615-639, 2008.

M. Montemerlo, J. Becker, S. Bhat, et al., “Ju-
nior: The Stanford entry in the urban chal-
lenge,” Journal of Field Robotics, vol. 25,
no. 9, pp. 569-597, 2008.

B. J. Patz, Y. Papelis, R. Pillat, G. Stein, and
D. Harper, “A practical approach to robotic de-
sign for the darpa urban challenge,” Journal
of Field Robotics, vol. 25, no. 8, pp. 528-566,
2008.

A. Bacha, C. Bauman, R. Faruque, M. Flem-
ing, C. Terwelp, C. Reinholtz, D. Hong,
A. Wicks, T. Alberi, D. Anderson, et al.,
“Odin: Team victortango’s entry in the darpa
urban challenge,” Journal of field Robotics,
vol. 25, no. 8, pp. 467-492, 2008.

K. Jo, J. Kim, D. Kim, C. Jang, and M. Sun-
woo, “Development of autonomous car - part
1> IEEE Transactions on Industrial Electron-
ics, vol. 61, no. 12, pp. 7131-7140, 2014.

K. Jo, J. Kim, D. Kim, C. Jang, and M. Sun-
woo, “Development of autonomous car - part
11,” IEEE Transactions on Industrial Electron-
ics, vol. 62, no. 8, pp. 5119-5132, 2015.

J. Ziegler, P. Bender, M. Schreiber, H. Late-
gahn, T. Strauss, C. Stiller, T. Dang, U. Franke,

[75]

[76]

[77]

[78]

[79]

N. Appenrodt, C. G. Keller, ef al., “Making
Bertha drive - an autonomous journey on a his-
toric route,” IEEE ITS Magazine, vol. 6, no. 2,
pp- 8-20, 2014.

A. Geiger, M. Lauer, F. Moosmann, B. Ranft,
H. Rapp, C. Stiller, and J. Ziegler, “Team an-
nieway’s entry to the 2011 grand cooperative
driving challenge,” IEEE Transactions on In-
telligent Transportation Systems, vol. 13, no. 3,
pp. 1008-1017, 2012.

L. Guvenc, I. M. C. Uygan, K. Kahraman,
R. Karaahmetoglu, I. Altay, M. Senturk, M. T.
Emirler, A. E. H. Karci, B. A. Guvenc, E. Al-
tug, et al., “Cooperative adaptive cruise con-
trol implementation of team mekar at the grand
cooperative driving challenge,” IEEE Trans-

actions on Intelligent Transportation Systems,
vol. 13, no. 3, pp. 1062-1074, 2012.

R. Kianfar, B. Augusto, A. Ebadighajari,
U. Hakeem, J. Nilsson, A. Raza, R. S. Tabar,
N. V. Irukulapati, C. Englund, P. Falcone,
et al., “Design and experimental validation of a
cooperative driving system in the grand coop-
erative driving challenge,” IEEE Transactions
on Intelligent Transportation Systems, vol. 13,

no. 3, pp. 994-1007, 2012.

O. S. Tas, N. O. Salscheider, F. Poggen-
hans, S. Wirges, C. Bandera, M. R. Zofka,
T. Strauss, J. M. Zollner, and C. Stiller, “Mak-
ing bertha cooperate—team annieway’s entry to
the 2016 grand cooperative driving challenge,”
IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 19, no. 4, pp. 1262-1276,
2017.

R. Hult, F. E. Sancar, M. Jalalmaab, A. Vi-
jayan, A. Severinson, M. Di Vaio, P. Falcone,
B. Fidan, and S. Santini, “Design and experi-
mental validation of a cooperative driving con-
trol architecture for the grand cooperative driv-
ing challenge 2016,” IEEE Transactions on In-
telligent Transportation Systems, vol. 19, no. 4,
pp- 1290-1301, 2018.

	Introduction
	Background
	Requirements Inference
	Rationale
	Functional Decomposition
	Sensor Abstractions
	Sensor Fusion
	World Model
	Behaviour Generation
	Planning
	Vehicle Control
	Actuator Interfaces
	Data Management
	System and Safety Management
	AUTOSAR Context

	Interactions Between Components
	Trade-off Analysis
	Discussion
	Incremental development and component reuse
	Functional safety

	Related Work
	Conclusions and Future Research

