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a b s t r a c t 

Systems that depend on third-party libraries may have to be updated when updates to these libraries 

become available in order to benefit from new functionality, security patches, bug fixes, or API improve- 

ments. However, often such changes come with changes to the existing interfaces of these libraries, pos- 

sibly causing rework on the client system. In this paper, we investigate versioning practices in a set of 

more than 10 0,0 0 0 jar files from Maven Central, spanning over 7 years of history of more than 22,0 0 0 

different libraries. We investigate to what degree versioning conventions are followed in this repository. 

Semantic versioning provides strict rules regarding major (breaking changes allowed), minor (no break- 

ing changes allowed), and patch releases (only backward-compatible bug fixes allowed). We find that 

around one third of all releases introduce at least one breaking change. We perform an empirical study 

on potential rework caused by breaking changes in library releases and find that breaking changes have 

a significant impact on client libraries using the changed functionality. We find out that minor releases 

generally have larger release intervals than major releases. We also investigate the use of deprecation 

tags and find out that these tags are applied improperly in our dataset. 

© 2016 Elsevier Inc. All rights reserved. 
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1. Introduction 

For users of software libraries or application programming in-

terfaces (APIs), backward compatibility is a desirable trait. Without

backward compatibility, library users will face increased risk and

cost when upgrading their dependencies. In spite of these costs

and risks, library upgrades may be desirable or even necessary, for

example if the newer version contains required additional func-

tionality or critical security fixes. To conduct the upgrade, the li-

brary user will need to know whether there are incompatibilities,

and, if so, which ones. 

Determining whether there are incompatibilities, however, is

hard to do for the library user (it is, in fact, undecidable in gen-

eral). Therefore, it is the library creator’s responsibility to indi-

cate the level of compatibility of a library update. One way to

inform library users about incompatibilities is through version

numbers. As an example, semantic versioning 1 ( semver ) suggests
∗ Corresponding author at: Technical University Delft, Delft, The Netherlands. 
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1 http://semver.org . 
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 versioning scheme in which three digit version numbers MA-

OR.MINOR.PATCH have the following semantics: 

MAJOR: This number should be incremented when incompatible

API changes are made; 

MINOR: This number should be incremented when functionality

is added in a backward-compatible manner; 

PATCH: This number should be incremented when backward-

compatible bug fixes are made. 

As an approximation of the (undecidable) notion of backward

ompatibility, we use the concept of a binary compatibility as de-

ned in the Java language specification. The Java Language Spec-

fication 

2 states that a change to a type is binary compatible with

equivalently, does not break binary compatibility with) pre-existing

inaries if pre-existing binaries that previously linked without error

ill continue to link without error. This is an underestimation, since

inary incompatibilities are certainly breaking, but there are likely

o be different (semantic) incompatibilities as well. For the pur-

ose of this paper, we define any change that does not main-

ain binary compatibility between releases to be a breaking change .
2 http://docs.oracle.com/javase/specs/jls/se7/html/jls-13.html . 
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xamples of breaking changes are method removals and return

ype changes. 3 

As a measurement for the amount of changed functionality in

 release, we will use the edit script size between two subsequent

eleases. Equipped with this, we will study versioning practices in

he Maven dataset, and contrast them with the idealized guidelines

s expressed in the semver specification. Even though we do not

xpect that all developers that submit code to the Maven repos-

tory are aware of the guidelines of semver , we still expect that

ost developers are aware that most other developers perceive a

ifference in changing a patch, a minor or a major version number

hen releasing a library. 

Semantic versioning principles were formulated in 2010 by

GitHub founder) Tom Preston–Werner, and GitHub actively pro-

otes semver and encourages all 10,0 0 0,0 0 0 projects hosted by

itHub to adopt it. Similarly, the Maven Central repository, the

epository used to collect dependencies that are specified using the

uild tool Maven, strongly recommends following semver when

eleasing new library versions. 4 

Semantic versioning principles have also been embraced in the

avascript community. An example of a Javascript project that ex-

licitly announced to follow semver is jQuery, which state that

the team has tried to walk the line between maintaining compati-

ility with code from the past versus supporting the best web devel-

pment practices of the present”. 5 Another example is NPM (Node

ackage Manager), 6 a build tool for Javascript similar to Maven,

hich requires users to follow semver when submitting a new

ersion of a library. 7 

An example of a software project which demonstrates that in-

luding breaking changes in non-major releases causes problems

or software developers is JUnit. In its 4.12-beta-1 release, JUnit in-

roduced breaking changes as compared to its previous release. In

ersion 4.12-beta-2, these breaking changes have been reversed af-

er complaints of library users. 8 

Another example of problems that can occur when backward

ompatibility is ignored is NuGet. 9 NuGet is a build tool for .NET

ystems and a software repository for software libraries, which au-

omatically includes the latest version of dependencies in software

rojects. This leads to problems when these releases contain break-

ng changes. 10 

Although the NuGet build system ignores backward compatibil-

ty problems of users of libraries, Microsoft suggests the following

istinction between major and minor releases 11 for .NET software: 

Major: “A higher version number might indicate a major rewrite

of a product where backward compatibility cannot be

assumed.”

Minor: “If the name and major version number on two assem-

blies are the same, but the minor version number is differ-

ent, this indicates significant enhancement with the inten-

tion of backward compatibility.”

Although not all developers of the projects mentioned before

ay be aware of the semantic versioning standard or other official

ules regarding incrementing major, minor or patch versions, a lot

f library users implicitly assume that non-major releases should
3 For an overview of different types of binary incompatibilities and a detailed 

xplanation, see http://wiki.eclipse.org/Evolving _ Java-based _ APIs . 
4 http://central.sonatype.org/pages/requirements.html . 
5 http://blog.jquery.com/2014/10/29/jquery- 3- 0- the- next- generations/ . 
6 http://www.npmjs.com . 
7 https://docs.npmjs.com/getting- started/semantic- versioning . 
8 https://groups.yahoo.com/neo/groups/junit/conversations/topics/24572 . 
9 https://www.nuget.org/ . 

10 http://blog.nuget.org/20141010/nuget- is- broken.html . 
11 http://msdn.microsoft.com/en-us/library/system.version%28v=vs.110%29.aspx . 
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ot include breaking changes. As argued in the semantic versioning

pecification, “these rules are based on but not necessarily limited to

re-existing widespread common practices in use in both closed and

pen-source software.”

But how common are these practices in reality, in open-source

ava libraries? Are breaking changes just harmless, or do they ac-

ually hurt by causing rework? Do breaking changes mostly occur

n major releases, or do they occur in minor releases as well? Fur-

hermore, for the breaking changes that do occur, to what extent

re they signaled through, e.g., deprecation tags ? Does the presence

f breaking changes affect the time (delay) between library version

elease and actual adoption of the new release in clients? 

In this paper, we seek to answer questions like these. To do so,

e make use of seven years of versioning history as present in the

ollection of Java libraries available through Maven’s central repos-

tory. 12 Our dataset comprises around 150,0 0 0 binary jar files, cor-

esponding to around 22,0 0 0 different libraries for which we have

 versions on average. Furthermore, our dataset includes cross-

sage of libraries (libraries using other libraries in the dataset),

ermitting us to study the impact of incompatibilities in concrete

lients as well. 

This paper is a substantially revised version of our earlier anal-

sis of semantic versioning practices in maven. In this paper, we

xtend this analysis with an assessment of the actual impact of

reaking changes. To approximate this impact, we introduce a new

ethod to inject breaking changes in library clients and analyze

he prevalence and dispersion of compilation errors caused by

hese changes. This results in estimates of the number of errors

aused by each type of breaking change. 

This paper is structured as follows. We start out, in Section 2 ,

y discussing related work in the area of binary incompatibil-

ties and change impact analysis. In Section 3 , we formulate

he research questions we seek to answer. Then, in Section 4 ,

e describe our approach to answer these questions, and how

e measure, e.g., breaking changes, changed functionality, and

eprecation. In Section 5 –11 we present our analysis in full detail.

e discuss the wider implications and the threats to the validity

f our findings in Section 12 and 13 , after which we conclude the

aper in Section 14 . 

. Related work 

To the best of our knowledge, our work is the first system-

tic study of versioning principles in a large collection of Java li-

raries. However, several case studies on backward compatible and

ncompatible changes in public interfaces as appearing in these

ibraries have been performed ( Dig and Johnson, 2006; Tempero

t al., 2008; Dietrich et al., 2014; Cossette and Walker, 2012; Mc-

onnell et al., 2013 ). 

.1. Manual investigations 

Cossette and Walker (2012) perform a manual retroactive study

n API incompatibilities to determine the correct adaptations to

igrate from an older to a newer version of a library. They also

im to determine recommender techniques for specific update

ypes. In contrast, our method to inject breaking changes can be

erformed automatically, and only gives a global indication of the

mount of work required to perform an update in terms of the

umber of compilation errors and the number of places that have

o be fixed. Our method does not provide any guidance how to

erform an update but can point to places where work has to be

erformed. 
12 http://search.maven.org/ . 

http://wiki.eclipse.org/Evolving_Java-based_APIs
http://central.sonatype.org/pages/requirements.html
http://blog.jquery.com/2014/10/29/jquery-3-0-the-next-generations/
http://www.npmjs.com
https://docs.npmjs.com/getting-started/semantic-versioning
https://groups.yahoo.com/neo/groups/junit/conversations/topics/24572
https://www.nuget.org/
http://blog.nuget.org/20141010/nuget-is-broken.html
http://msdn.microsoft.com/en-us/library/system.version%28v=vs.110%29.aspx
http://search.maven.org/
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Similarly, Dig and Johnson (2006) investigate binary incompat-

ibilities in five other libraries and conclude that most of the back-

ward incompatible API changes are behavior-preserving refactor-

ings, which suggests that refactoring-based migration tools should

be used to update applications. Dietrich et al. (2014) have per-

formed an empirical study into evolution problems caused by li-

brary upgrades. They manually detect different kinds of source and

binary incompatibilities, and conclude that although incompatibil-

ity issues do occur in practice, the selected set of issues does not

appear very often. 

2.2. Automated suggestions 

Another area of active research is to automatically detect refac-

torings based on changes in public interfaces ( ̧S avga and Rudolf,

2007; Dagenais and Robillard, 2008; Dig et al., 2006; Henkel and

Diwan, 2005; Xing and Stroulia, 2007; Balaban et al., 2005; Kapur

et al., 2010 ). The idea behind these approaches is that these refac-

torings can automatically be “replayed” to update to a newer ver-

sion of a library. This way, an adaptation layer between the old and

the new version of the library can automatically be created, thus

shielding the system using that library from backward incompat-

ible changes. Dagenais and Robillard (2008) , for example, present

a recommendation system that suggests adaptations to client pro-

grams by analyzing how a framework adapts to its own changes.

Similarly, the tool of Xing and Stroulia (2007) uses framework us-

age examples to propose ways to upgrade to a new version of a

library interface. 

While our work investigates backward incompatibilities for

given version string changes, Bauml and Brada (2009) take the op-

posite approach, in the sense that they propose a method to gener-

ate version number changes based on changes in OSGi bundles. A

comparable approach in the Maven repository would be to create

a plugin that automatically determines the correct subsequent ver-

sion number based on backward incompatibilities and the amount

of new functionality present in the new release as compared to the

previous one. 

2.3. Maven repository 

The Maven repository has been used in other work as well.

Davies et al. (2011) use the same dataset to investigate the prove-

nance of a software library, for instance, if the source code was

copied from another library. They deploy several different tech-

niques to uniquely identify a library, and find out its history, much

like a crime scene containing a fingerprint. Ossher et al. (2012) also

use the Maven repository to reconstruct a repository structure with

directories and version based on a collection of libraries of which

the groupId, artifactId and version are not known. This can be use-

ful because manually curating a repository such as Maven Central

is an error-prone and time-consuming process. 

2.4. Change impact analysis techniques 

The methodology that we use to inject breaking changes and

determine the impact of these changes can be regarded as a

change impact analysis technique, for which there already exist

several alternative approaches ( Ren et al., 2005; Badri et al., 2005;

Zhou et al., 2008 ). For instance, call graph analysis techniques can

obtain a graph that can point developers to places where rework

is expected, such as done by Ren et al. (2005) . Other techniques

use correlations of file properties or historically changed file pairs

as a basis to determine files that are likely to change together, as

in Zimmermann et al. (2005) . For an overview of change impact

analysis techniques, see Lehnert (2011) . 
Our automated change injection mechanism also bears simi-

arities to approaches applied in the field of automated software

esting and, more specifically, error injection. Error injection tech-

iques inject faults to find out if the resulting errors are covered by

est cases. The goal of this paper is different, however: we want to

etermine the amount of rework caused by applying library up-

ates. For an overview of error injection techniques, see Duraes

nd Madeira (2006) . 

.5. Other work 

Issues with backward incompatibilities can also be found in

eb interfaces. Romano and Pinzger (2012) investigate changes in

he context of service oriented architectures, in which a web in-

erface is considered to be a contract between subscribers and

roviders. These interfaces are shown to suffer from the same type

f problems as investigated in this paper, which leads to rework on

he side of the subscribers of these interfaces. The authors propose

 tool that compares subsequent versions of these web interfaces

o automatically extract changes. 

Developer reactions to API deprecations has been investigated

or the Smalltalk language and ecosystem by Robbes et al. (2012) .

hey have investigated a set of more than 2600 distinct Smalltalk

ystems which contained 577 deprecated methods and 186 depre-

ated classes, and found that API changes caused by deprecation

an have a large impact on developers using that API. 

Complete migrations to other libraries providing similar func-

ionality has been investigated by Teyton et al. (2014) . In contrast

o our work, Teyton et al. are concerned with a migration between

ifferent libraries performing similar functionality, rather than a

igration between different versions of the same library. 

In previous work ( Raemaekers et al., 2013 ), we empirically in-

estigated the relationship between changes in dependencies and

hanges in systems using these dependencies. The difference with

ur previous approach is that we distinguish between different

ypes of library updates, and that we use the edit script size as

 measure for rework, which more accurately measures the differ-

nce between methods than the difference in LOC as used in our

revious work. 

. Research questions 

The overall goal of this paper is to understand to what degree

evelopers of software libraries use versioning conventions in the

evelopment of these libraries, and what the impact of unstable

nterfaces is on clients using these libraries. We investigate in-

tability of interfaces through the number of compilation errors

aused by breaking changes and the dispersion of these errors

hrough libraries using the changed interfaces. 

Even though not all developers might be aware of the semver
tandard, we still regard semver as a formalization of principles

hat are considered to be best practices, even before the manifesto

as released in 2010. As mentioned before, the prime example of

uch a best practice is not to include breaking changes in major

eleases. 

In this paper, we seek to answer the following research

uestions: 

• RQ1 : How are semantic versioning principles applied in practice

in the Maven repository in terms of breaking changes? 
• RQ2 : What is the impact of breaking changes in terms of com-

pilation errors? 
• RQ3 : Has the adherence to semantic versioning principles in-

creased over time? 
• RQ4 : How are dependencies actually updated in practice, what

are typical properties of new library releases, and do these
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properties influence the speed with which dependencies get

updated? 13 

• RQ5 : Which library characteristics are shared by libraries which

frequently introduce a large number of breaking changes, and

as a result, cause compilation errors? 
• RQ6 : How are deprecation tags applied to methods in the

Maven repository? 
• RQ7 : What is the impact of breaking changes in terms of the

spread of errors caused by these changes? 

o answer these questions, a wide range of different kinds of data

s required. This data is gathered from our repository using differ-

nt methods, which are described in the next section. 

. Maven analysis approach 

In this paper, we analyze a snapshot of the Maven’s Central

epository, dated July 11, 2011. 14 Maven is an automated build sys-

em that manages the entire “build cycle” of software projects. To

se Maven in a software project, a pom.xml file is created that

pecifies the project structure, settings for different build steps

e.g. compile, package, test) as well as libraries that the project de-

ends on. These libraries are automatically downloaded by maven,

rom specified repositories. These repositories can be private as

ell as public. For open source systems, the Central Repository is

ypically used, which contains jar files and sources for the most

idely used open source Java libraries. 

Our dataset extracted from this central repository contains

44,934 Java binary jar files and 101,413 Java source jar files for

 total of 22,205 different libraries. This gives an average of 6.7 re-

eases per library. For more information on our dataset, we refer to

aemaekers et al. (2013) . 

.1. Determining backward incompatible API changes 

Determining full backward compatibility amounts to determin-

ng equivalence of functions, which in general is undecidable. In-

tead of such semantic compatiblity, we will rely on binary incom-

atibilities. 

To detect breaking changes between each subsequent pair of li-

rary versions, we use Clirr. 15 Clirr is a tool that takes two jar files

s input and returns a list of changes in the public API. Clirr is

apable of detecting 43 API changes in total, of which 23 are con-

idered breaking and 20 are considered non-breaking. Clirr does

ot detect all binary incompatibilities that exist, but it does detect

he most common ones (see Table 2 ). We executed Clirr on the

omplete set of all subsequent versions of releases in the Maven

epository. 

In this paper, we only investigate differences between subse-

uent releases of a library and we do not compare previous major

eleases or minor releases with each other. For instance, when a

ibrary has released version 3,0, 3.1, 3.2, 4.0, and 4.1, respectively,

e investigate the differences between 3.1 and 3.0, between 3.2

nd 3.1, between 4.0 and 3.2 and between 4.1 and 4.0. We do not

ompare version 4.0 and 3.0 with each other. This is done because

e assume that library developers typically do not update from

ajor release to major release but rather from previous release to

ext release. 

Whenever Clirr finds a binary incompatibility between two re-

eases, those releases are certainly not compatible. However, if Clirr
13 In this paper, an included library in a client system is called a dependency . 
14 Obtained from http://juliusdavies.ca/2013/j.emse/bertillonage/maven.tar.gz 

ased on Davies et al. (2011 , 2013) . 
15 http://clirr.sourceforge.net . 
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ails to find a binary incompatibility, the releases can still be se-

antically incompatible. As such, our reports on e.g., the percent-

ge of releases introducing breaking changes is an underestima-

ion: the actual situation may be worse, but not better. 

.2. Determining the impact of breaking changes 

To detect the actual impact of breaking changes on client li-

raries using them, we inject breaking changes in the source code

f a software library, link code of client libraries, and compile the

ode. Fig. 1 shows an example of a library update and its impact. 

A library class is shown, Lib1 , and a system class that uses

t, System1 . Two changes have been introduced in version 2 of

ib1 : method foo added a parameter bar and method doStuff
hanged its return type from int to String . If we upgrade the

ependency of Lib1 from version 1 to version 2 in System1 , this

auses two errors: Calling c1.foo() now gives a compilation er-

or since it expects an integer as parameter, and c1.doStuff()
eturns a String instead of an int , which also gives a compila-

ion error. 

The two changes to Lib1 are both breaking, and require adap-

ation and recompilation of a client using the changed function-

lity. We investigate both libraries as released by developers as

ell as other libraries using these releases in the same repository.

o distinguish between these two, we refer to any library that in-

ludes another library as (system) S x , and we refer to the included

ibrary as L y . Although we denote a next version of L with L y +1 ,

his does not mean that L y +1 has to be an immediate successor

ersion of L y . Any version of L which has an release date after L y 
s included in the set of next versions of L y . 

To determine the impact of breaking changes (binary incompat-

bilities), we follow the general process as outlined in Fig. 2 . First,

ource code of a client system ( S x ) is scanned and compiled with

ource code of a single dependency L y of S x (denoted with 1 ©). 

Next, all breaking changes between L y and its next version L y +1 

re calculated, as well as the edit script (see Section 4.4 ) to con-

ert the first version into the second ( �L y,y +1 , denoted with 2 ©).

hird, each breaking change is inserted individually in L y . Errors

ppearing in S x after inserting these changes are then stored. The

dit script size and breaking changes in �L y,y +1 are combined to

stimate the number of changed statements per breaking change

denoted with 3 ©). 

Furthermore, S x +1 denotes a next version of S x , which could

ave updated L y to L y +1 . Any breaking change in �L y,y +1 would

ead to work in the update from S x to S x +1 , if the changed code is

ctually used in S x . The amount of work done in �L y,y +1 for clients

ith and without breaking changes in dependencies (denoted with

4 ) is analyzed as part of RQ1. 

The procedure to inject library changes is formally described in

lgorithm 1 and can be explained in more detail as follows. For

ach library L (e.g. “JUnit”), all versions are collected (line 3). For

ach of these versions, a list of all libraries using L y is obtained

 usingL y , line 5). For each library version L y (e.g., “Junit 3.8.1”) in

he repository, a list of all future versions is created (line 6). For

ach pair of current and next version U〈 L y , L y +1 〉 (the transitive clo-

ure over all next versions of L y ), all public API changes are deter-

ined ( �L y,y +1 , line 10). Each change C ∈ �L y,y +1 is inserted into

 y and the compilation errors are collected in all systems S x that

se L y (lines 11–22). First, all files in S x and L y are compiled and

inked together ( S x –L y , line 13). Then, pre-existing errors in S x –L y 
re stored in errStart (line 14). 

A single change is then injected in the code of S x –L y (line 15).

ode is recompiled with the inserted change (line 16). Errors are

gain collected in errEnd (line 17), and pre-existing errors are re-

oved from errEnd (line 18). The remaining errors are stored for

his combination of a change, system, library and library update

http://juliusdavies.ca/2013/j.emse/bertillonage/maven.tar.gz
http://clirr.sourceforge.net
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Fig. 1. Example of a library update and impact on a system. Lib1 contains two changes, method foo with a new parameter int bar , and method doStuff with a 

return type of String instead of int . The compilation errors as a Java compiler would detect them are underlined in red. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Conceptual overview of our breaking change impact determination 

approach. 

Algorithm 1: Change injection algorithm. 

1: errStored ← ∅ 

2: for each library L do 

3: allVersions ← all versions of L 

4: for each version L y ∈ allVersions do 

5: usingL y ← all source jars S x using L y ∈ repository 

6: possibleUpdates ← all possible updates 

7: { U〈 L y , L y +1 〉| L y +1 ∈ allVersions , 

8: L y +1 newer than L y } 
9: for each update U〈 L y , L y +1 〉 ∈ possibleUpdates do 

10: �L y,y +1 ← all changes between L y and L y +1 

11: for each S x ∈ usingL y do 

12: for each change C ∈ �L y,y +1 do 

13: Compile code of S x –L y 
14: errStart ← collect compile errors in S x –L y 
15: Inject C in code of L y 
16: Recompile code of S x –L y with C injected 

17: errEnd ← collect compile errors in S x –L y 
18: errors( S x , L y , L y +1 ,C) ← errEnd − errStart

19: errStored ← errStored ∪ errors( S x , L y , L y +1 ,C) 

20: Revert C in code of L y 
21: end for 

22: end for 

23: end for 

24: end for 

25: end for 
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line 19), and can later be grouped by change types, versions and

ibraries. Afterwards, the change is reverted (line 20). 

From the build scripts ( pom.xml ) of each jar file, dependencies

n other jar files were extracted. Source code in each source jar

as automatically extracted and was compiled with the Eclipse JDT

ore API, 16 which is the compiler of the Eclipse IDE. The Maven

uild system itself was used to obtain a list of other libraries that

 x and L y need to compile successfully. The binary class files for

ach of these dependencies where added to the classpath of the

ompiler. Visitors for classes, methods and parameters were used

o obtain data. The entire repository was processed on the DAS-3

upercomputer 17 using 100 nodes in parallel in approximately 20

ays, for an aggregate running time of 5.5 years. 

In this paper, we perform several analyses on the same dataset

ut with a different number of observations. This is due to dif-

erent selection criteria and exclusion of observations because of

issing data, which depends on the specific analysis performed. 

.3. Determining subsequent versions and update types 

In the Maven repository, each library version (a single jar file) is

niquely identified by its groupId , artifactId , and version ,
or instance “junit ”, “junit ” and “4.8.1 ”. To determine subse-

uent version pairs, we sort all versions with the same groupId
nd artifactId based on their version string. We used the

aven Artifact API 18 to compare version strings with each other,

aking into account the proper sorting given the major, minor,

atch and prerelease in a given version string. The result is that

ach pair of subsequent versions is marked as either a major, a

inor or a patch update. 

Since semver applies only to version numbers containing a

ajor, minor and patch version number, we only investigate pairs

f library versions which are both structured according to the for-

at “MAJOR.MINOR.PATCH” or “MAJOR.MINOR”. In the latter case,

e assume an implicit patch version number of 0. 

Semantic versioning also permits prereleases, such as

.2.3-beta1 or (as commonly used in a maven setting)
16 http://www.eclipse.org/jdt/core . 
17 http://www.cs.vu.nl/das3 . 
18 http://maven.apache.org/ref/3.1.1/maven-artifact . 

http://www.eclipse.org/jdt/core
http://www.cs.vu.nl/das3
http://maven.apache.org/ref/3.1.1/maven-artifact
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Fig. 3. An example of the calculation of an edit script between two version of a method. The resulting edit script has size of 5: one update, two delete, one insert and one 

move operation. 
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.2.3-SNAPSHOT . We exclude prereleases from our analysis

ince semver does not provide any rules regarding breaking

hanges or new functionality in these release types. 

.4. Detecting changed functionality and edit script size 

In order to compare major, minor, and patch releases in terms

f size, we look at the amount of changed functionality between

eleases. To do so, we look at the edit script between each pair of

ubsequent versions, and measure the size of these scripts. We do

o by calculating differences between abstract syntax trees (ASTs)

f the two versions. Hence, we can see, for example, the total num-

er of statements that needs to be inserted, deleted, updated or

oved to convert the first version of the library into the second.

e use the static code analysis tool ChangeDistiller 19 to calcu-

ate edit scripts between library versions. For more information on

hangeDistiller, we refer to Fluri et al. (2007) . 

Fig. 3 shows an example of two pieces of code and the steps

s determined by ChangeDistiller to convert the first version of the

ethod into the second one. ChangeDistiller detects that the state-

ent int x = 1; (line 2) is updated with a new value of 2.

lso, it detects that the if -statement on line 4 of version 1 is

eleted, and the statement x-- (line 5) is moved. Altogether, the

ize of the edit script to convert the first version into the second

s 5: one update, two delete, one insert and one move operation. 

We use edit script as representation of changed functionality

or the following reasons: 

1. It closely resembles the actual work developers have performed

between two releases. 

2. It is not sensitive to changes in layout, whitespace, and

comments. 

3. It can be obtained automatically, which is a requirement given

the large size of the repository. 

To assess the amount of work that a library developer performs

hen breaking changes are introduced, we calculate the size of

he edit script to convert L y into L y +1 . The size of the edit script

epresents the total number of statements that must be inserted,

eleted, moved or updated to transform L y into L y +1 . The size of

he edit script cannot be directly translated into effort in terms

f man-hours since two edit scripts of the same length can each

ake a different time to implement, but it can nonetheless serve as

n indicator for this effort. The edit script size is used as follows.
19 https://bitbucket.org/sealuzh/tools-changedistiller . 

s  

T  

r  
irst, the number of different change types in each update �L y,y +1 

s determined. Then, we calculate the edit script size to update L y 
o L y +1 . From this data, we estimate the amount of work that is

ssociated with a single breaking change with a regression model.

Algorithm 2: Procedure to obtain edit script size data. 

1: for all library L do 

2: allVersions ← all versions of L 

3: for all version L y ∈ allVersions do 

4: possibleUpdates ← all possible updates 

5: { U〈 L y , L y +1 〉| L y +1 ∈ allVersions , 

6: L y +1 newer than L y } 
7: for all { U〈 L y , L y +1 〉 ∈ possibleUpdates do 

8: ess ( L y , L y +1 ) ← calcEdit Script Size( L y , L y +1 ) 

9: for all change type c ∈ changeTypes do 

10: nrChanges( c, L y , L y +1 ) ← |{ c| c ∈ �L y,y +1 }| 
11: end for 

12: end for 

13: end for 

14: end for 

15: 

16: function calcEdit Script Size ( L y , L y +1 ) 

17: edit Script Size L y,y +1 
← 0 

18: for each java file ∈ L y do 

19: f y +1 ← find match for f y in L y +1 

20: editScript f y,y +1 
← calculate � f y,y +1 

21: edit Script Size L y,y +1 
+= | edit Script f y,y +1 

| 
22: end for 

23: return editScriptSize L y,y +1 

24: end function 

Algorithm 2 formally describes our approach to obtain edit

cript size data. The procedure to obtain all possible update pairs

lines 1–7) is similar to Algorithm 1 . The algorithm calculates the

dit script size and the number of breaking changes for all library

pdates. 

To calculate the edit script size (lines 16–24), the following

teps are taken. For each java file in L y , the corresponding next

ersion of the file is found in L y +1 (line 19). The edit script to con-

ert f y into f y +1 is calculated (line 20), and the size of this edit

cript is added to the total edit script size of 〈 L y , L y +1 〉 (line 21).

his data serves as dependent variable in the regression model of

ework estimation. Finally, the number of times the 10 different

https://bitbucket.org/sealuzh/tools-changedistiller
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Table 1 

Version string patterns and frequencies of occurrence in the Maven repository. 

# Pattern Example #Single #Pairs Incl. 

1 MAJOR.MINOR 2.0 20,680 11,559 Yes 

2 MAJOR.MINOR.PATCH 2.0.1 65,515 50,020 Yes 

3 #1 or #2 with nonnum. chars 2.0.D1 3269 2150 Yes 

4 MAJOR.MINOR-prerelease 2.0-beta1 16,115 10,756 No 

5 MAJOR.MINOR.PATCH-pre. 2.0.1-beta1 12,674 8939 No 

6 Other versioning scheme 2.0.1.5.4 10,930 8307 No 

Total 129,138 91,731 

Table 2 

The most common breaking and non-breaking changes in the 

Maven repository as detected by Clirr. 

Breaking changes 

# Change type Frequency 

1 Method has been removed (MR) 177,480 

2 Class has been removed (CR) 168,743 

3 Field has been removed (FR) 126,334 

4 Parameter type change (PTC) 69,335 

5 Method return type change (MRC) 54,742 

6 Interface has been removed (IR) 46,852 

7 Number of arguments changed (NPC) 42,286 

8 Method added to interface (MAI) 28,833 

9 Field type change (FTC) 27,306 

10 Field removed, previously constant (CFR) 12,979 

11 Removed from the list of superclasses 9429 

12 Field is now final 9351 

13 Accessibility of method has been decreased 6520 

14 Accessibility of field has been weakened 6381 

15 Method is now final 5641 

16 Abstract method has been added 2532 

17 Added final modifier 1260 

18 Field is now static 726 

19 Added abstract modifier 564 

20 Field is now non-static 509 

Non-breaking changes 

1 Method has been added 518,690 

2 Class has been added 216,117 

3 Field has been added 206,851 

4 Interface has been added 32,569 

5 Method removed, inherited still exists 25,170 

6 Field accessibility increased 24,954 

7 Value of compile-time constant changed 16,768 

8 Method accessibility increased 14,630 

9 Addition to list of superclasses 13,497 

10 Method no longer final 9202 
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f  
update types occur in �L y,y +1 is calculated and stored (line 10).

These numbers serve as the independent variables in our regres-

sion model. 

ChangeDistiller was used to calculate edit scripts in �L y,y +1 

( Fluri et al., 2007 ). Fig. 3 shows an example of two pieces of code

and the steps as determined by ChangeDistiller to convert the first

version of the method into the second one. ChangeDistiller detects

that the statement int x = 1; (line 2) is updated with a new

value of 2. Also, it detects that the if -statement on line 4 of ver-

sion 1 is deleted, and the statement x--- (line 5) is moved. Alto-

gether, the size of the edit script to convert the first version into

the second is 5: one update, two delete, one insert and one move

operation. 

ChangeDistiller works on the level of individual source files,

but was adapted to work on the level of jar files. This can be

seen in lines 22–27 of Algorithm 2 . For each two versions of a

java source file, ChangeDistiller calculates the edit script to con-

vert the first version into the second. In our approach, we see

each jar file as a collection of java files. Each java file in the jar

file is iterated and the corresponding next version of that file is

found in L y +1 . the length of the edit script to convert f y into f y +1 

is added to the total edit script size for the jar file. To match ver-

sions of files, filenames that matched directly are considered to be

two versions of the same file (for instance, two files with a file-

name ending in java/src/foo/bar/Bar.java are considered

direct matches). Files that did not have a direct counterpart in the

other version, meaning they were deleted, added, or moved, were

matched using a token-based similarity algorithm similar as used

by ChangeDistiller itself. When two file pairs exceeded the default

token-based similarity threshold of 0.8, these files where consid-

ered to be moved. Our adaptation of ChangeDistiller returns a sin-

gle number that represents the length of the edit script to convert

S x into S x +1 . For each update in the Maven repository, this number

is stored in our database. 

4.5. Obtaining release intervals and dependencies 

To calculate release intervals, we collect upload dates for each

jar file in the Maven Central Repository. Upload dates were ob-

tained for 129,183 out of 144,934 (89.1%) of libraries. A small num-

ber of libraries have the same date as release date (November 11th,

2005), which is suspected to be a default value, and these were left

out of the analysis. 

4.6. Obtaining deprecation patterns 

For API developers, the Java language offers the possibil-

ity to warn about future incompatibilities by means of the

“@Deprecated ” annotation. 20 By marking old methods as dep-

recated, backward compatibility is retained while still providing li-

brary users with a signal to stop using that method. In semver ,
the use of such annotations is required, before methods are actu-

ally removed. To detect deprecation tags, we scan the source code

for the text “@Deprecated ”. By building an abstract syntax tree

by using the Java Development Tools Core library, 21 we match the

deprecation tags to update types from Section 4.3 to make it possi-

ble to distinguish between different types of deprecation patterns. 

In the next sections, we answer each of our research questions.
20 http://docs.oracle.com/javase/1.5.0/docs/guide/javadoc/deprecation/deprecation. 

html . 
21 http://www.eclipse.org/jdt/core . 
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. RQ1: application of semantic versioning 

We first investigate different version string patterns that can be

ound in our repository. After this, we determine how many major,

inor and patch releases actually occur in our dataset, and differ-

nces between these update types in terms of release cycle and

verage number of breaking changes. 

.1. Version string patterns 

Table 1 shows the six most common version string patterns that

ccur in the Maven repository. For each pattern, the table shows

he number of libraries with version strings that match that pat-

ern ( #Single ) and the number of subsequent versions that both

ollow the same pattern ( #Pairs ) – we will use the latter to identify

reaking changes between subsequent releases. The table shows

hat most libraries follow the version string pattern as prescribed

y semantic versioning, which enables automated analysis of ad-

erence to this standard as performed in this paper. 

The first three versioning schemes correspond to actual

emver releases, whereas the remaining ones correspond to

http://docs.oracle.com/javase/1.5.0/docs/guide/javadoc/deprecation/deprecation.html
http://www.eclipse.org/jdt/core
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Table 3 

The number of major, minor and patch releases that contain 

breaking changes. 

Update type Contains at least 1 breaking change Total 

Yes % No % 

Major 4268 35 .8% 7624 64 .2% 11,892 

Minor 10,690 35 .7% 19,267 64 .3% 29,957 

Patch 9239 23 .8% 29,501 76 .2% 38,740 

Total 24,197 30 .0% 56,392 70 .0% 80,589 
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Table 4 

Analysis of the number of breaking and non-breaking changes, edit script size, 

and release intervals of major, minor, and patch releases. 

Type #Breaking #Non-break. Edit script Days 

μ σ 2 μ σ 2 μ σ 2 μ σ 2 

Major 58 .3 337 .3 90 .7 582 .1 50 .0 173 .0 59 .8 169 .8 

Minor 27 .4 284 .7 52 .2 255 .5 52 .7 190 .5 76 .5 138 .3 

Patch 30 .1 204 .6 42 .8 217 .8 22 .7 106 .5 62 .8 94 .4 

Total 32 .0 264 .3 52 .2 293 .3 37 .2 152 .3 67 .4 122 .9 
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rereleases . Since prereleases can be more tolerant in terms of

reaking changes ( semver does not state what the relationship

etween prereleases and non-prereleases in terms of breaking

hanges and new functionality is) 22 we exclude prereleases from

ur analysis. 

The table shows that the majority of the version strings (69.3%)

s formatted according to the first two schemes, and 22.3% of the

ersion strings contains a prerelease label (patterns 4 and 5). The

ifference between the single and the pair frequency is due to two

easons: (1) the second version string of an update can follow a

ifferent pattern than the first; and (2) a large number of libraries

nly has a single release (6442 out of 22,205 libraries, 29%). 

This shows that most libraries follow a version string pattern that

s compatible with semantic versioning guidelines, even though these

uidelines may not have been followed intentionally. 

.2. Breaking and non-breaking changes 

In total, 126,070 update pairs 〈 L y , L y +1 〉 have been extracted

rom the Maven repository. Out of all these potential updates,

8,143 pairs contain an L y that is actually used by an S x . Out of

hese 48,143 pairs, 3260 pairs actually contain breaking changes

6.8%). 

Table 2 shows the top 20 breaking changes and top 10 non-

reaking changes in the Maven repository as detected by Clirr. The

reaking changes in these table are obtained from the 126,070

otential updates 〈 L y , L y +1 〉 . The most frequently occurring break-

ng change is the method removal, with 177,480 occurrences. A

ethod removal is considered to be a breaking change because

he removal of a method leads to compilation errors in all places

here this method is used. The most frequently occurring non-

reaking change as detected by Clirr is the method addition, with

18,690 occurrences. 

Table 3 shows the number of major, minor and patch releases

ontaining at least one breaking change. The table shows that

5.8% of major releases contains at least one breaking change. We

lso see that 35.7% of minor releases and 23.8% of patch releases

ontain at least one breaking change. This is in sharp contrast to

he best practice that minor and patch releases should be back-

ard compatible. The overall number of releases that contain at

east one breaking change is 30.0%. 

The table shows that there does not exist a large difference be-

ween the percentage of major and minor releases that contain

reaking changes. This indicates that best practices such as en-

oded in semver are not adhered to in practice with respect to

reaking changes. The total number of updates in Table 3 (80,589)

iffers from the total number of pairs in Table 1 (91,731) because

f missing or corrupt jar files, which have a correct version string

ut cannot be analyzed by Clirr. 

We can thus conclude that breaking changes are common, even in

on-major releases. 
22 Pre-releases in maven correspond to -SNAPSHOT releases, which should not be 

istributed via Maven’s Central Repository (see https://docs.sonatype.org/display/ 

epository/Sonatype+OSS+Maven+Repository+Usage+Guide ). 

d  

m

.3. Major vs. minor vs. patch releases 

To understand the adherence of semantic versioning principles

or major, minor, and patch releases, Table 4 shows the average

umber of breaking changes, non-breaking changes, edit script size

nd number of days for the different release types. Each release

s compared to its immediate previous release, regardless of the

elease type of this previous release. 

As the table shows, on average there are 58 breaking changes in

 major release. Although there does seem to be some respect for

emantic versioning principles in the sense that minor and patch

eleases introduce fewer breaking changes (around half as many

s the major releases), 27 and 30 breaking changes on average is

till a substantial number (and clearly not 0 as semantic version-

ng requires). The differences between the three update types are

ignificant with F = 7.31 and p = 0, tested with a nonparametric

ruskall–Wallis test, since the data is not normally distributed. 23 

In terms of size, major releases are somewhat smaller than mi-

or releases (average edit script size of 50 and 52, respectively),

ith patch releases substantially smaller (22), with F = 117.49 and

 = 0. This provides support for the rule in semver stating that

atch releases should contain only bug fixes, which overall would

ead to smaller edit script sizes than new functionality. 

With respect to release intervals, these are on average 2 (for

ajor and patch releases) to 2.5 months (for minor releases), with

 = 115.47 and p = 0. It is interesting to see that minor, and not

ajor updates take the longest time to release. 

Care must be taken when interpreting the mean for skewed

ata. All data in this table follows a strong power law, in which

he most observations are closer to 0 and there are a relative small

mount of large outliers. Nonetheless, a larger mean indicates that

here are more large outliers present in the data. 

Major releases are generally smaller in terms of work performed

han minor releases, and are released faster than minor releases. Ma-

or releases contain less breaking changes on average than minor

eleases. 

.4. Median analysis 

To find out how the number of days since the previous release

elates to the update type of the release, we perform a quantile re-

ression that shows the median number of days that an update in

ach category approximately takes. Since the data is highly skewed,

e perform a bootstrap to resample from the skewed distributions,

hich provides normal distributions. To further prevent the influ-

nce of extreme outliers, we estimate the median number of days

nstead of the average number of days per group. 

Table 5 shows the result of the analysis. Practically, the table

hows us that major releases are released at a median number of

ays of 42. Minor releases are released at a median number of days
23 Even if the data is not normally distributed, we still summarize the data with a 

ean and standard deviation to provide insight in the data. 

https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide
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Table 5 

ANOVA analysis to compare the number of break- 

ing changes and the churn in major, minor and patch 

releases. 

Release type Median coeff. Bootstr. std. error p-Value 95% C.I. 

Minor 10 1.319 0.0 0 0 7.416 to 12.584 

Patch −3 1.353 0.027 −5.652 to −0.348 

Constant (major) 42 1.128 0.0 0 0 39.50 to 44.50 

Table 6 

The types of changes detected. Frequency = the number of times this 

change type occurred in an update, #Errors = The number of errors 

this update type caused in all S x , #E/F = the average number of errors 

per breaking change, #sys = The number of distinct S x that contain er- 

rors because of this update, #uniq = The number of different updates 

of L y that contain this change. 

# Type Frequency #Errors #E/F #sys #uniq 

1 MR 177,480 1,524,498 8 .59 8328 960 

2 CR 168,743 1,645,518 9 .75 3983 505 

3 FR 126,334 4,143,723 32 .80 8028 960 

4 PTC 69,335 956,314 13 .79 5357 547 

5 RTC 54,742 288,939 5 .28 4478 433 

6 IR 46,852 95,250 2 .03 1657 130 

7 NPC 42,286 533,741 12 .62 5701 713 

8 MAI 28,833 126,427 4 .38 4746 562 

9 FTC 27,306 1,233,095 45 .16 4324 485 

10 CFR 12,979 677,234 52 .18 3354 317 

Total 595,158 11,139,014 18 .72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Regression analysis to estimate the relationship between breaking 

changes and errors. 

Dependent variable ln (NE) 

Number of observations 2269 

R 2 0.8879 

Model p -Value 0.0 0 0 0 

Independent Coeff. Std. err p 95% C.I. 

ln (NBC) 1.683 0.133 0 1.657–1.709 
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of 42 + 10 = 52, and patch releases take a median of 42 − 3 = 39

days to be released. 

This shows that minor releases tend to take longer to be re-

leased than major releases. An ANOVA analysis based on averages

( n = 58,763, F = 0) gives 79 days for major, 84 days for minor

and 61 days for patch releases, also showing that minor releases

tend to take longer on average to be released than major releases.

A possible explanation is that a major release contains less rework

that takes a large development effort but instead mainly contains

changes to the interface instead of rework effort in the entire li-

brary, which would take more time. An alternative explanation is

that development on major releases started on a separate branch

earlier than the update dates in our data shows. 

To answer RQ1 : The version string conventions as prescribed 

by semantic versioning are generally followed in the Maven 

repository. However, breaking changes are widespread, even 

in non-major releases. Surprisingly, on average minor re- 

leases contain more changes and take longer to release than 

major releases. 

6. RQ2: breaking changes and errors 

To answer RQ2 : “What is the impact of breaking changes in

terms of compilation errors?”, we investigate the number of break-

ing changes and the relationship with compilation errors in this

section. 

Table 6 shows overview statistics for the 10 different types of

breaking changes detected by applying Algorithm 1 to the entire

Maven repository. 

The table shows the number of breaking changes and the num-

ber of compilation errors these changes cause. For instance, class

removals occur 168,743 times and cause a total of 1,645,518 com-

pilation errors when applying the algorithm to the entire reposi-
ory. The most frequently occurring breaking change is the method

emoval, occurring 177,480 times in the repository and causing

,645,518 compilation errors in total. For method removals, there

re 3,983 unique jar files that contain compilation errors caused

y breaking changes in 505 unique jar files. Another type of fre-

uently occurring breaking change is the class removal, which ap-

ears 126,334 times in our dataset and causes 1,645,518 errors. 

The average number of errors per breaking change is also

hown in Table 6 . It shows that a constant field removal ( CFR ) has

he highest average number of errors per change: 52.18. Further-

ore, field type changes (45.16), field removals (32.8) and param-

ter type changes (13.79) cause a relatively large number of com-

ilation errors as compared to other change types. On average, a

reaking change causes 18.72 errors. 

Applying all possible library updates and collecting all compila-

ion errors gives a total of 595,158 breaking changes of the 10 most

ccurring change types and a total of 11,139,014 compilation er-

ors because of these changes. This thus demonstrates that break-

ng changes are a real problem in the Maven repository, since they

ause a large number of compilation errors which would need to

e fixed before a newer version of a library can be used. 

.1. The relationship between breaking changes and errors 

To further investigate the relationship between breaking

hanges and the number of errors caused by these changes, we

alculate the correlation between these properties. The Spear-

an rank correlation between the number of breaking changes in

L y,y +1 and the number of errors in S x caused by these changes is

.65 ( p = 0), indicating a significant positive relationship between

reaking changes and compilation errors caused by these changes,

s expected. 

To investigate further how many errors each breaking change

ntroduces, we perform the following regression analysis: 

n (NE) i = β1 ln (NBC) i + ε i 

ith NE being the number of errors in S x and NBC being the num-

er of breaking changes in �L y,y +1 . We do not estimate a constant

ince each error must be caused by a breaking change. Both NE

nd NBC are log-transformed because the data is lognormally dis-

ributed. The results can be found in Table 7 . The model is highly

ignificant with a p -Value of 0 and an adjusted R 2 of 88.79%. The

stimated slope coefficient of NBC is 1.683, indicating that if the

umber of breaking changes increases by 1%, the number of errors

s expected to increase by 1.683%. 
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Table 8 

ANOVA analysis to compare the average edit script size in library updates 

in the entire Maven repository and library updates with breaking changes 

in dependencies. 

Dataset μ σ Freq. 

2106 systems with breaking changes 0.657 4.055 2106 

Entire Maven repository 0.376 3.500 24,565 

SS df MS 

Between groups 40.99 1 40.99 

Within groups 4154.3 26,669 0.156 

Total 4195.30 26,670 0.157 
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We can thus conclude that breaking changes cause a significant

mount of compilation errors in client systems. 

.2. Average amount of work with and without breaking changes 

To further investigate the relationship between edit script size

nd breaking changes in libraries, we calculate the mean edit script

ize per method for library updates with and without breaking

hanges. We use the 3260 library updates which contain breaking

hanges as described in Section 4 , but due to missing data, only

106 systems can be used in this analysis. We denote the average

dit script size in this set as ( μbc ), which we compare to the av-

rage edit script size in the entire Maven repository regardless of

reaking changes, denoted as ( μmaven ). The edit script size is di-

ided by the number of methods in L y +1 to correct for the effect

f library size. We compare these means to find out if the amount

f work in library updates with breaking changes is comparable to

he amount of work performed in general. 

There are three possibilities: 

1. μbc < μmaven : A library update containing breaking changes

contains less work as compared the work done in the average

library release. This may be caused by the fact that fixing break-

ing changes requires rework in the library itself, as shown in

Table 12 , which may interfere with other work performed in

that update. 

2. μbc ≈ μmaven : The average amount of work done in library up-

dates which include breaking changes is not significantly differ-

ent from work done in releases in general. 

3. μbc > μmaven : A developer performs more work in a library up-

date that contains breaking changes than in library releases in

general: breaking changes are more frequently introduced in

bigger updates. 

To compare the means between these two groups, we perform

n ANOVA analysis, of which the results are shown in Table 8 . 

The analysis is significant with F = 12.16 and a p -Value of 0,

ndicating that there exists a significant difference in the amount

f work performed in library updates with breaking changes and

ibrary updates in general. The analysis contains 24,565 libraries

rom the Maven repository and 2106 libraries from the rework esti-

ation analysis we performed in Section 8.1 . The mean edit script

ize per method of the Maven repository group is 0.376 and the

ean for the 2106 systems is 0.657. This means that for two sys-

ems with 100 methods, the edit script size for a system with

reaking changes in library updates will be 65.7 and the edit script

ize for a library update in general will be 37.6, which is a dif-

erence of approximately 75%. The ANOVA analysis indicates that

here exists statistical support for the third scenario, μbc > μmaven ,

hich means the average edit script size per method tends to be

arger for library updates with breaking changes than for library

pdates in general. This means that breaking changes occur in li-

rary updates where a relatively large amount of code is changed.
his could indicate that developers pay less attention to backward

ompatibility when they work on a large library update. 

To answer RQ2 : Breaking changes have a significant impact in 

terms of compilation errors in client systems. 

. RQ3: semantic versioning adherence over time 

In this section, we answer RQ3 : “Has the adherence to seman-

ic versioning principles increased over time?” To find this out, we

lot the number of major, minor and patch releases through time

nd the number of releases containing breaking changes over time.

his plot is shown in Fig. 4 . 

The figure shows that the ratio of major, minor and patch re-

eases is relatively stable and around 15%, 30% and 50%, respec-

ively. The percentage of major releases per year seems to decrease

lightly in later years. 

Regardless of release type, one in every three releases contains

reaking changes. This percentage is relatively stable but slightly

ecreasing in later years. One out of every four releases violates

emver (“breaking if non-major”), but this percentage also slightly

ecreases in later years: from 28.4% in 2006 to 23.7% in 2011. 

To answer RQ3 : The adherence to semantic versioning prin- 

ciples has increased over time with a moderate decrease of 

breaking changes in non-major releases from 28.4% in 2006 

to 23.7% in 2011. 

. RQ4: update behavior 

In this section, we answer RQ4 : “How are dependencies actu-

lly updated in practice, what are typical properties of new library

eleases, and do these properties influence the speed with which

ependencies get updated?”. 

The key reason to investigate breaking changes is that they

omplicate upgrading a library to its latest version. To what extent

s this visible in the maven dataset? What delay is there typically

etween a library release and the usage of that release by other

ystems? Is this delay affected by breaking changes? 

To investigate the actual update behavior of systems using li-

raries, we collected all updates from the Maven repository that

pdate one of their dependencies. Thus, we investigate usage sce-

arios within the maven dataset. 

We obtained a list of 2,984 updates from the Maven repository

f the form 〈 S x , S x +1 , L y , L y +1 〉 , where L is a dependency of S which

as updated from version y to version y + 1 in the update of S

rom x to x + 1 . For example, when the Spring framework included

ersion 3.8.1 of JUnit in version 2.0, but included version 3.8.2 in

ersion 2.1, Spring framework performed a minor update of JUnit

n a patch release. 

Table 9 shows the number of updates of different types of S

nd L in the Maven repository. When a system S is updated, a li-

rary dependency L can be updated as well to a major, a minor,

r a patch version. When looking at each horizontal row in the ta-

le, it shows that most major updates of dependencies (543) are

erformed in major updates of S , and most minor updates of de-

endencies (791) are performed in minor updates of S . The same is

rue for patch updates of dependencies, which are most frequently

pdated in patch updates of S (297). 
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Fig. 4. The percentage of major, minor, patch, breaking, and breaking if non-major releases through time. 

Table 9 

The number of updates of different types of S and 

simultaneous updates of dependency L . 

Update S Update L Total 

Major Minor Patch 

Major 543 189 82 814 

Minor 651 791 227 1669 

Patch 150 54 297 501 

Total 1344 1034 606 2984 

L1

uses

Jan 1 May 1Feb 1 Mar 1 Apr 1

S1

L2

S2 S3
next ver.

L3

Aug 1
S3-L Update lag

patch major minor

One minor 
release lagging

Fig. 5. An example of a timeline with a system S updating library L . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 

Percentiles for the number of major, minor and patch dependency ver- 

sions lagging. 

Min p25 p50 p75 p90 p95 p99 Max 

Major 0 0 0 0 1 1 4 22 

Minor 0 0 0 1 2 4 6 101 

Patch 0 0 0 1 5 6 13 46 
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To further investigate update behavior of dependencies, we cal-

culate the number of versions of L that S lags behind, as illustrated

in Fig. 5 . The figure shows an example of three versions of S , and a

dependency L of S . On January 1, L 1 , a patch update, is released. S 1 
decides to use this version in its system. On March 1, a major up-

date of L is released, L 2 . The next release of S, S 2 , happens on April

1. This release still includes L 1 , although L 2 was already available to

include in S 2 . The same is true for S 3 , which could have included

L 3 but still includes L 2 . The period that S has been using L 1 is from

February 1, to April 1. The total time that S has a dependency on L

is from February 1 to August 1. 

This example illustrates that there can exist a lag between the

release of a new version of L and the inclusion in S . In this exam-

ple, S 3 lags one minor release behind, and could have included L 3 .

The time S 3 theoretically could update to L 3 is between May, 1 and

August, 1. 
For each system S and each of its dependencies L , we calculate

he number of major, minor and patch releases that version of S

ags behind. The release dates of S x and L y are used to determine

he number of releases after L y but before S x . 

Table 10 shows percentiles for the number of major, minor and

atch versions that dependencies L of system S are lagging as com-

ared to the latest releases of L at the release date of S . For in-

tance, when a system released a new version at January 1, 2013

nd that release included a library with version 4.0.1 but there

ave been 10 minor releases of that library before January 1 and

fter the release date of version 4.0.1 that could have been in-

luded in that release of S , the number of minor releases lagging

s 10 for that system-library combination. These numbers are cal-

ulated for each system-library combination separately. 

The table shows that the number of major releases that S lags

n average tends to be smaller than the number of minor and

atch releases lagging. The distributions are highly skewed, with

 median of 0 for all three release types and a 75th percentile of 1

or minor and patch releases, indicating that the majority of library

evelopers include the latest releases of dependencies in their own

ibraries. The numbers also indicate that developers tend to better

eep up with the latest major releases than with minor and patch

eleases, as indicated by the 90th percentile of 1 for major releases

nd a 90th percentile of 5 for patch releases. 

To better understand the reasons underlying the update lag,

e investigate two properties of libraries that could influence the

umber of releases that systems are lagging: the edit script size

nd the number of breaking changes of these dependencies. We

ypothesize that people are reluctant to update to a newer ver-

ion of a dependency when it introduces a large number of break-

ng changes or introduces a large amount of new or changed func-

ionality. To test this, we investigate whether a positive correlation
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Table 11 

Spearman correlations between the size of the update lag of L and breaking 

changes and the edit script size in the next version of L . 

Breaking changes Edit script size Changes 

Major versions lagging 0 .0772 −0 .0701 −0 .0465 

Minor versions lagging 0 .1440 0 .1272 −0 .0434 

Patch versions lagging 0 .0190 0 .0199 0 .3824 

e  

g  

c  

d  

o  

s

 

c  

h  

t  

n  

d

 

l  

n  

t  

c  

c  

r  

t  

f

 

m  

w  

n  

t  

t  

s  

v

 

c  

s  

g

8

 

p  

d  

w  

l  

i

 

i  

t  

T  

T  

3  

T  

s

 

n  

m  

L  

m  

9  

s  

i  

o  

s  

2  

s

 

w  

c  

f  

r  

c  

t  

b

a

 

u  

o  

e

0  

w  

o

 

1  

t  

t  

F  

h  

b  

r  

t

9

 

a  

o

 

c  

l  

t

 

p  

t  

b  

n  

w  

a  

l  

i

 

e  

F  
xists between the number of major, minor and patch releases lag-

ing in libraries using a dependency and the number of breaking

hanges and changed functionality in new releases of that depen-

ency. We calculate Spearman correlations between the number

f versions lagging and the number of breaking changes and edit

cript size in these versions. 

The results are shown in Table 11 . The table shows Spearman

orrelations, which are calculated on 13,945 observations and all

ave a p -Value of 0. The correlations are generally very weak, with

he maximum correlation being 0.1440 between the number of mi-

or versions lagging and the number of breaking changes in these

ependencies. 

The numbers indicate that, in general, people are more re-

uctant to update major, minor and patch releases with a larger

umber of breaking changes, but the effects are very small. Al-

ernatively, one could argue that people tend to ignore breaking

hanges and changed functionality in new versions of dependen-

ies, perhaps because they do not even know a priori whether a

elease introduces breaking changes. Thus, there exists a lag in

hese dependencies, regardless of breaking changes or changed

unctionality. 

The correlation between the edit script size and the number of

ajor versions lagging is even negative with a value of −0.0701,

hich indicates that major library versions with a larger amount of

ew or changed functionality are generally included slightly faster

han releases with less changed or new functionality. The correla-

ion between the number of breaking changes and the edit script

ize and the number of patch versions lagging is negligible with

alues of 0.0190 and 0.0199, with significant p -Values. 

The results indicate that although the number of breaking

hanges and the edit script size of a library does seem to have

ome influence on the number of library releases systems are lag-

ing, the influence generally is not very large. 

.1. Breaking changes and edit script size 

To further investigate update behavior on the library side, we

erform a regression analysis, linking the edit script size of an up-

ate to different types of breaking changes. This analysis shows

hat amount of work is typically performed in a new release of a

ibrary and what edit script size is associated with different break-

ng changes. 

From the data acquired through Algorithm 2 , we estimate the

nfluence of each breaking change type in �L y,y +1 by including

he number of occurrences of each type as independent variables.

he dependent variable is the size of the edit script of �L y,y +1 .

able 12 shows the results of this regression, which is based on the

260 pairs containing breaking changes as described in Section 4 .

he actual number of observations is only 2447 due to the exclu-

ion of observations with missing data. 

As can be seen in Table 12 , the model as a whole is highly sig-

ificant ( p = 0 ) and has an adjusted R 2 of 58.68%, indicating that

ore than 58% of the variability in the edit script size between

 y and L y +1 is explained by the 10 different change types in the

odel. The model shows that all variables are significant at the

5% confidence interval, indicating that the all variables contribute

ignificantly to the total edit script size in �L y,y +1 . The coefficients
n the model indicate the size of the performed rework in terms

f tree edit operations to update a library from L y to L y +1 . For in-

tance, the change type method removal ( MR ) has a coefficient of

.415, indicating that a method removal in �L y,y +1 takes 2.415 edit

cript operations, on average. 

As the table shows, all 10 breaking change types are associated

ith a significant edit script size, but some changes have a larger

oefficient than others. For instance, a class removal and an inter-

ace removal only represent an edit script size of 0.539 and 0.684,

espectively. This could be explained through the average size of

lasses or interfaces that are removed, which could be smaller than

he average class. The constant of 5.0 indicates that the average li-

rary update which contains breaking changes has a “base level”

verage of 5 edit script lines. 

As an example of the expected edit script size in a library

pdate, consider a library which removes a class with 10 meth-

ds and two private fields in its next version. The predicted

dit script size would then be 5 . 001 + 1 ∗ 0 . 539 + 5 ∗ 2 . 415 + 2 ∗
 . 818 = 19 . 251 . The constant of 5 indicates that a library change

ithout any of the included change types takes an edit script size

f 5, on average. 

Comparing the standardized coefficients ( beta ) for each of the

0 change types, it can be seen that the method removal ( MR ) and

he parameter type change ( PTC ) have the largest influence on the

otal edit script size, with a beta of 0.346 and 0.208, respectively.

ield removals, class removals and field type changes turn out to

ave relatively little influence on the total edit script size, with

eta ’s of 0.059, 0.069, and 0.049, respectively. The constant field

emoval CFR correlates too much with other change types and is

herefore excluded automatically from the regression. 

To answer RQ4 : updates of dependencies to major releases 

are most often performed in major library updates. There ex- 

ists a lag between the latest versions of dependencies and 

the versions actually included, with the gap being the largest 

for patch releases and the smallest for major releases. There 

exists a small influence of the number of backward incom- 

patibilities and of the amount of change in new versions on 

this lag. Method removals and parameter type changes are 

two changes which are typically associated with the largest 

changes in library code. 

. RQ5: library characteristics associated with large impact 

In this section, we answer RQ5 : “Which library characteristics

re shared by libraries which frequently introduce a large number

f breaking changes, and as a result, cause compilation errors?”

To assess which library characteristics cause a large number of

ompilation errors in dependent systems, we investigate the corre-

ation of breaking changes and errors with two library properties:

he maturity and the size of a library. 

We use the index of a release (any release, major, minor or

atch) as a proxy for the maturity of a library, starting with 1 from

he oldest release. We assume that the more releases a certain li-

rary had before the current release, the more mature it is. Alter-

ative measures, such as the number of days since the first release,

ere considered inferior since a library can have a single release

nd another release 2 years later, which would indicate a mature

ibrary. The size of a library is measured as the number of methods

n a library. 

These properties are investigated for the following reason. We

xpect that the size of a library increases as the library matures.

or this reason, the number of methods and the release index are
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Table 12 

Regression analysis on the edit script size and different change types in libraries. 

Dependent variable ess (L y,y +1 ) 

Number of observations 2447 

R 2 58.83% 

Adjusted R 2 58.68% 

Model p -Value 0 

Indep. # Coeff. Std. err beta p 95% C.I. 

Constant 0 5.001 1.096 – 0 2.851–7.151 

MR 1 2.415 0.110 0.346 0 2.200–2.630 

CR 2 0.539 0.109 0.069 0 0.325–0.753 

FR 3 0.818 0.187 0.059 0 0.451–1.184 

PTC 4 1.921 0.141 0.208 0 1.646–2.197 

RTC 5 2.021 0.221 0.141 0 1.587–2.454 

IR 6 0.684 0.218 0.043 0 0.256–1.113 

NPC 7 2.734 0.191 0.204 0 2.360–3.108 

MAI 8 2.534 0.193 0.178 0 2.156–2.913 

FTC 9 1.239 0.367 0.049 0 0.518–1.960 

CFR 10 Omitted due to collinearity 

Table 13 

Spearman rank correlations between the number of breaking changes, num- 

ber of errors, number of methods, and the release index of a library. 

0.65 ( p = 0) 

#Breaking changes #Errors 

0.0278 ( p = 0) # of methods 0.3291 ( p = 0) 0.3392 ( p = 0) 

Release index −0.015 ( p = 0.153) 0.1078 ( p = 0) 
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24 
expected to be positively correlated. We also expect that it be-

comes increasingly hard for library developers to maintain back-

ward compatibility as the maturity of a library increases, sim-

ply because the library has a larger interface that can be broken.

Therefore, the correlation between the maturity and the number

of breaking changes in a release is expected to be positive as well.

The number of compilation errors is expected to have compara-

ble correlations with these two properties, because of the direct

relationship between breaking changes and the number of errors

caused by these changes. 

Spearman rank correlation coefficients of these properties can

be found in Table 13 . There is a correlation of 0.3291 between

the number of methods in a library and the number of breaking

changes in that library, meaning that bigger libraries indeed tend

to introduce more breaking changes. 

The correlation between the release index and the number of

methods in that library turns out to be only marginally positive

with a value of 0.0278, meaning that there is practically no corre-

lation between these two properties: most libraries do not seem

to grow in the number of methods through time. This is con-

trary to our expectation. There is a negligible correlation between

the number of breaking changes and the release index, indicating

that libraries do not introduce more breaking changes when they

become more mature, which is also contrary to our expectation.

The correlation between the number of errors and the number of

methods is also positive, indicating that larger libraries cause more

compilation errors. 

To answer RQ5 : Bigger libraries tend to introduce more break- 

ing changes and errors. Libraries do not grow when they be- 

come more mature, on average, and more mature libraries do 

not introduce more breaking changes. 
0. RQ6: deprecation patterns 

In this section, we answer RQ6 : “How are deprecation tags ap-

lied to methods in the Maven repository?”

As we have seen, breaking changes are common. To deal with

reaking changes, the Java language offers deprecation annotations.

or the use of such annotations, semantic versioning provides the

ollowing rules for deprecation of methods in public interfaces: “a

ew minor release should be issued when a new deprecation tag is

dded. Before the functionality is removed completely in a new major

elease, there should be at least one minor release that contains the

eprecation so that users can smoothly transition to the new API.”24 

hus, whenever there is a breaking change (which must be in a

ajor release), this should be preceded by a deprecation (which

an be in a minor release). 

In this section, we investigate whether this principle is adhered

o in practice. We investigate how many libraries actually depre-

ate methods, and if they do, how many releases it takes before

hese methods get deleted, if at all. We also find out if there is in-

eed at least one minor change in between before the method is

emoved, as semver prescribes. 

In total, 1196 out of 22,205 artifacts (5.4%) contain at least one

ethod deprecation tag. Given our observation that 1 in 3 releases

ntroduces breaking changes, this number immediately appears to

e too low. 

Table 14 and 15 show different correct and incorrect depreca-

ion patterns. The columns with headers v1 to v4 contain possible

eprecation patterns in a subsequent major, minor, minor and ma-

or release, respectively. For each pattern in the table, we count its

requency in the maven data set. As the table shows, there are a

ouple of different ways to deprecate and delete methods in major

r minor releases, some of which are correct according to semver
column c ). 

Cases 1 and 2 in Table 14 show an example of a private method

ith and without deprecation tags. As the table shows, the first

ase occurs in 24.24% of all methods. Since semver is only about

ersioning and changes in public interfaces, these cases are there-

ore not investigated further. Case 3 shows a public method that is

either deleted nor deprecated, which is the most common life cy-

le for a method (42% of the cases). Case 4 shows a public method

hat is deprecated, but is never removed in later versions. Accord-

ng to the principles regarding deprecation as stated in semver ,
his is correct behavior. As the table shows, this is the most com-

on use of the deprecation tag, even though it is used in just 793
http://semver.org/spec/v2.0.0.html . 

http://semver.org/spec/v2.0.0.html
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Table 14 

Correct method deprecation patterns. @d = deprecated tag, c = correct, i = interesting; pr 

= private; pu = public; – = method deleted. 

Correct patterns 

# v1 (maj.) v2 (min.) v3 (min.) v4 (maj.) c i Freq. % 

1 pr m1 pr m1 pr m1 pr m1 y n 63,698 24.34 

2 pr m2 pr m2 pr @d m2 pr @d m2 y n 113 0.04 

3 pu m3 pu m3 pu m3 pu m3 y n 110,613 42.27 

4 pu m4 pu @d m4 pu @d m4 pu @d m4 y y 793 0.30 

5 pu m5 pu @d m5 pu @d m5 – y y 0 0 

Table 15 

Incorrect method deprecation patterns. @d = deprecated tag, c = correct, i = interesting; 

pr = private; pu = public; – = method deleted. 

Incorrect patterns 

# v1 (maj.) v2 (min.) v3 (min.) v4 (maj.) c i Freq. % 

6 pu m6 pu m6 – – n y 86,449 33.03 

7 pu m7 pu @d m7 – – n y 0 0 

8 pu m8 pu m8 pu m8 pu @d m8 n y 0 0 

9 pu m9 pu @d m9 pu m9 pu m9 n y 16 0.01 
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ethods. Case 5 shows an example of deprecation by the book,

xactly as prescribed by semver . The method is declared depre-

ated in a minor release, there is another minor release that also

eclares the method deprecated and in the next major release, the

ethod is removed. This correct pattern does not occur at all in

he maven data set. 

Table 15 shows examples of incorrect deprecation patterns. Case

 shows a public method that is removed from the interface but

ever declared deprecated, which is not correct: This is the typi-

al case of introducing a breaking change in a minor release. Case

 deprecates the method, but deletes it in a minor release, which

ould not be correct. This case does not occur. Case 8 declares the

ethod deprecated in a major release, which would also be incor-

ect (and which does not occur). Case 9 shows a method that is

ndeprecated, about which semver does not explicitly contain a

tatement. 

As the table further shows, public methods without a depre-

ated tag in their entire history are in the majority with 42.27%.

urprisingly, the number of public methods that ever get depre-

ated in their entire history is only 793, or 0.30%. The number

f public methods that get deleted without a deprecated tag is

6,449, or 33.03%. The number of methods that get deleted after

dding a deprecated tag to an earlier version is 0 (cases 6 and 8).

inally, the number of methods that get “undeprecated” is 0.01%. 

These results are surprising since they suggest that developers

o not apply deprecation patterns in the way they are supposed

o be used. In fact, developers do not seem to use the deprecated

ag for methods very often at all. Most public methods get deleted

ithout applying a deprecated tag first (case 5), and methods that

o get a deprecated tag are almost never deleted (case 4). This sug-

ests that developers are reluctant to remove deprecated function-

lity from new releases, possibly because they are afraid to break

ackward compatibility. Case 8 is, according to semver , the only

roper way to deprecate and delete methods. However, the pattern

as not found in the entire Maven repository. 

To answer RQ6 : Developers do not follow deprecation guide- 

lines as suggested by semantic versioning. Most public meth- 

ods are deleted without applying a deprecated tag first, and 

when these tags are applied to methods, these methods are 
L

never deleted in later versions. Deprecation tags are never ap- 

plied correctly in the Maven repository as described by seman- 

tic versioning. 

1. RQ7: dispersion estimation 

In this section, we answer RQ7 : “What is the impact of break-

ng changes in terms of the spread of errors caused by these

hanges?”

1.1. Explanation 

When fixing compilation errors caused by a library update, not

nly the number of errors is relevant in the estimation of total re-

ork, but the dispersion of these errors across different places in

he code is relevant as well. We expect that a change that causes

0 errors inside a single file is easier to fix than a change that

auses 10 errors in 10 different files, since the code and context of

ach file has to be understood separately before its errors can be

xed. Fixing errors in multiple different files is therefore expected

o take more time than fixing errors inside a single file. 

For instance, a software library that is typically used in a lim-

ted set of places in code, such as JUnit or a database library, is

xpected to cause less work to change since code is localized in a

mall set of places. In contrast, a change in a base class library of

ava itself, such as in the String class, is expected to have a large

mpact because its usage is so pervasive: there is a large chance

hat a class uses an instance of a String . 
Fig. 6 shows the concept underlying this analysis. As can be

een in this figure, L y +1 is used by three different libraries, S x 1 , S x 2 
nd S x 3 . Library S x 1 calls a method that was changed in �L y,y +1 ,

nd as a result, 2 compilation errors in one distinct method are in-

roduced. Library S x 2 calls a method that was added, but this does

ot introduce any errors. 

Library S x 3 calls a method that was removed, and therefore, 3

rrors in 2 distinct methods are introduced. One error in S x 3 is not

irectly related to the call to L y +1 but is a cascading error, caused

y the other method that directly calls L y +1 . Overall, there are 3

istinct methods that are impacted because of the update of L y to

 y +1 . 
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 Sx3 x
x

x

 Sx2

     
r

c
a

 Sx1 x
x

Release index: 4
Popularity: 100
#API methods: 4

#errors: 2
1 distinct method

#errors: 3
2 distinct methods

#errors: 0
0 distinct methods

c = changed
a = added
r = removed
x = error

Ly+1

Fig. 6. Example of a library L y +1 and three libraries ( S x 1 , S x 2 , S x 3 ) that use it. The 

update from L y to L y +1 contains 3 changes to interface methods: a method header 

was changed (c), a method was removed (r), and a method was added (a). 
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25 For an explanation of this low R 2 , see Section 13.7 . 
We perform a regression analysis to test factors influencing the

dispersion of errors in different libraries S x with changes in a de-

pendency L y . As a measure of the dispersion of compilation errors

across systems, we count the number of distinct files of all S x that

use L y and which contain one or more compilation error after the

update to L y +1 . 

11.2. Explanation of independent variables 

We include 3 independent variables in our analysis, which are

expected to explain a part of the variability in error dispersion

across systems. These factors are the release index of L y , the num-

ber of methods in L y and the relative usage frequency of L y in the

Maven repository. The rationale for inclusion of these independent

variables is as follows. The number of methods in L y is a mea-

sure of the size of that library. We expect that a larger size of L y 
causes methods of this library to be used at more separate places

in S x , because it is expected to contain more separate pieces of

functionality. 

We include the release index as independent variable to mea-

sure maturity for the same reason it was included in the anal-

ysis in Section 10 : we expect that libraries tend to increase the

amount of functionality they provide over time as the library ma-

tures, which would lead to a larger scattering of errors across S x .

With the inclusion of both the release index and library size as

independent variables, we can test for the influence of both inde-

pendent variables separately, while keeping the others constant. 

We include the popularity as independent variable to correct

for usage frequency of libraries, which is defined as the number of

libraries that use L y divided by the total number of libraries in the

repository (144,934). When a library L y is used more frequently, it

will cause more errors in systems using it simply because it is used

more. This independent variable corrects for that effect. 

Note that these three variables are all properties of L y +1 , and

not of S x , although the errors appear in S x . We include properties

of L y +1 in this analysis since we expect that the error dispersion in

S x is, to a degree, a property of the library causing the errors. Since

error dispersion is also expected to be influenced by properties of

S x itself, we do not expect that the included properties are fully

able to explain all variability in the model, which would lead to a

relatively low R 2 . 

We include the natural logarithm of the number of distinct files

and the number of methods in L y because data analysis shows that

the natural logarithm of these variables has a linear relationship. 

11.3. Regression results 

Table 16 shows the result of this analysis. 
The model has an adjusted R 2 of 0.1333, which is significant

ith a p -Value of 0. 25 The release index and the natural logarithm

f the number of methods in L y are significant but the popularity

f L y is not. The beta coefficients show that the size of L y is the

ost important factor in explaining the dispersion of errors across

 x , with a beta of 0.381. The release index of a library has a coef-

cient that is significant but practically not significantly different

rom 0. 

This means that, after correcting for library popularity and ma-

urity, the number of methods in a library is a significant predic-

or for the dispersion of errors in client systems. This could be ex-

lained by our theory that larger libraries contain more separate

ieces of functionality, which have a bigger chance of ending up at

ifferent places in client systems. 

To answer RQ7 : The size of a library tends to increase the dis- 

persion of errors in client systems. 

2. Discussion 

The results of this study indicate that the stability of inter-

aces and mechanisms to signal this instability to developers leaves

uch to be desired. One in every three interfaces contains break-

ng changes, and additionally, one in three interfaces that should

ot contain breaking changes actually does. The usage of the dep-

ecation tag and the deletion of methods in the Maven repository

how that the average developer tends to disregard the effects his

ctions have on clients of a library. 

2.1. Signaling interface instability 

Our results show that developers do not tend to follow the

est practices encoded in semver , even though the used version-

ng schemes suggest a semantic pattern. If developers would ad-

ere completely to semver and their releases contain the same

mount of breaking changes as found in the Maven repository, the

umber of major releases should be much larger than is currently

he case. This low adherence is surprising since there are no other

echanisms available, except versioning schemes and deprecation

ags, which signal interface instability. Possible explanations are

hat library developers are not aware of existing semantic version-

ng practices, they are not aware that they have introduced break-

ng changes, they do not expect that the changes they make have

ctual impact on client systems, or they simply do not care. Either

ay, we argue that the principles set out by semver should be

ollowed by every developer of software libraries, or any piece of

oftware of which the interface is used by other developers. 

In our opinion, ultimately, better designed and more stable

nterfaces leads to a lower maintenance burden of software in

eneral. When a library user, or a user of any piece of publicly

vailable functionality knows that there are expected changes

hen upgrading to a newer version, the developer can antici-

ate this and choose to postpone or include the update. Strict

dherence to semantic versioning principles also forces library

evelopers to think hard about the functionality they release, and

bout the design of the public interface they are releasing. It is

ncreasingly hard for library developers to change their overall

esign of their interface after it has been published. This problem

ecomes worse the more users actually use the interface. Releas-

ng a new major release can effectively signal that continuity of
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Table 16 

Regression analysis to analyze factors associated with a large error dispersion. 

Dependent variable ln(#distinct files with error in S x ) 

Number of observations 3690 

R 2 0 .1354 

Adjusted R 2 0 .1333 

Model p -Value 0 .0 0 0 0 

Independents Coeff. beta Std. err p-Value 95% C.I. 

Release index ( L y ) −0 .007 −0 .075 0 .003 0 .006 −0 .013 to −0.002 

ln(nr. methods ( L y )) 0 .313 0 .381 0 .022 0 0 .269 to 0.357 

Popularity ( L y ) −47 .68 −0 .019 67 .26 0 .478 −179 .6 to 84.27 

Constant −0 .262 – 0 .131 0 .045 −0 .519 to −0.006 
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1

he old interface should not be expected and that radical changes

ay be present. However, when this mechanism is only partially

sed, which we have shown is the case in the Maven repository,

t becomes unclear what exactly a major release means. 

The concept of an interface can be seen as a set of mathemat-

cal functions, which are by definition immutable. Daily software

ngineering practice, however, is different, since changes to these

unctions are common. By using semantic versioning principles, in-

erface consumers are signaled that the normal expectation that

hey might have regarding the stability of interface functions does

ot hold in a particular case. 

Another explanation for the lack of discipline in interface ver-

ioning is that the Java modularization mechanism is not suited to

rovide all visibility levels as desired by developers. For instance,

evelopers sometimes release “internal” packages. These are pack-

ges that should be hidden from outside developers and are only

eant to be used by the developers themselves. The problem with

nternal packages is that they are publicly visible, meaning that

utside developers have complete access to these packages, just

ike regular packages. 

What is missing from the Java language is another layer of vis-

bility, which hides internal packages from outside users. An ex-

mple of a mechanism that does provide this level of visibility is

he modularization structure of the OSGi framework. Additionally,

ntire libraries are sometimes released that are only meant to be

sed by the developers themselves, even without the use of in-

ernal packages. Java or the Maven repository also do not provide

upport to prevent external users from using these libraries. In

act, these libraries should have never been released in the Maven

epository to begin with. 

The low number of methods that use the deprecation tag in

he entire Maven repository was surprising. A possible explanation

or this is that classes can also be deprecated completely, with-

ut individually deprecating all methods in that class. Our analysis

ill not detect these cases. Future work could further investigate

hether developers deprecate entire classes instead of deprecating

nly single methods. 

2.2. Other versioning standards 

Semantic versioning is not the only standard for versioning

oftware libraries. For instance, the OSGi alliance has released

heir own semantic versioning manifesto 26 and contains compa-

able guidelines as the ones in semver . Furthermore, there ex-

st several alternative versioning approaches, 27 but the versioning

chemes described in these approaches do not seem to be used in

he Maven repository, as can be seen in Table 1 . For this reason,

nly adherence to the principles stated by semver was checked

n this paper. 
26 http://www.osgi.org/wiki/uploads/Links/SemanticVersioning.pdf . 
27 http://en.wikipedia.org/wiki/Software _ versioning . 

 

o  

b  
2.3. Actual usage frequencies 

In our research, we do not take into account the difference be-

ween internal and non-internal packages. The number of internal

ackages as compared to the number of non-internal packages is

egligible, and are therefore not expected to influence our analy-

es in a material way. 

We also do not take into account the actual usage of packages,

lasses and methods with breaking changes. It makes a difference

hether a public method in the interface of a library is used fre-

uently by other developers, such as AssertEquals in JUnit, or

he method is not used at all by other developers. We consider

he impact of breaking changes on libraries using that functional-

ty outside the scope of this paper. However, semantic versioning

rinciples generally do not state that breaking changes in major

eleases can only occur in parts of the library that are never used,

ut instead states that breaking changes should never be present

n minor and patch releases, regardless of actual usage. The same

s true for breaking changes in internal and non-internal packages.

Future work could investigate the difference in the occurrence

f breaking changes in functionality that is actually used by other

evelopers and breaking changes in internal packages. Also, the ad-

erence to semver in libraries that use the OSGi framework could

e investigated. We expect that the adherence to semver is higher

n packages that use OSGi since OSGi provides an additional layer

f visibility which would prevent counting breaking changes in in-

ernal packages. 

2.4. Release interval and edit script size 

Table 4 showed that major releases have smaller release inter-

als and also contain less functional change. We expected that ma-

or releases have larger release intervals instead. This could be ex-

lained by the fact that developers often start working on a major

elease alongside the minor or patch release (by creating a branch)

f the previous version, which would decrease the actual release

nterval. 

The table also shows that major releases generally contain less

hanged functionality than minor releases, as measured by edit

cript size. A possible explanation for this is that developers create

 new major release especially for backward incompatible changes

n its API, and new functionality is added later. 

Seen this way, a major release can be interpreted as a signal

hat gives information on significant changes in the interface of a

ibrary, while saying nothing about the amount of changed func-

ionality in the release. 

2.5. Major version 0 releases 

Semver states that “Major version zero (0.y.z) is for initial devel-

pment. Anything may change at any time. The public API should not

e considered stable.”. We did not consider whether the effects as

http://www.osgi.org/wiki/uploads/Links/SemanticVersioning.pdf
http://en.wikipedia.org/wiki/Software_versioning


156 S. Raemaekers et al. / The Journal of Systems and Software 129 (2017) 140–158 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h  

a  

u  

r  

h  

l  

s  

w  

f  

i  

r

1

 

M  

d  

N  

f  

c  

r  

b  

o  

c  

T  

n  

o  

a  

t  

T  

l

1

 

w  

a  

i  

o  

l  

i  

a

 

w  

v  

o  

b  

d  

r  

t  

f  

m  

p

1

 

r  

r  

t  

t  

f  

c  

d  

f

tested in this paper also hold for releases with a major version of

zero. The number of releases having a major version of 0 is 10.44%

(13,162/126,070), which is a substantial part of all releases. Future

work could investigate whether the principles as tested in this pa-

per are also visible in releases with a major version of 0. We ex-

pect that the number of breaking changes in these releases will be

considerably higher than other releases. 

12.6. Edit scripts as rework measure 

The edit script size to convert a library into one of its next ver-

sions was chosen to represent the performed rework in that up-

date. It was preferred over other measurements of rework, such as

the difference between the number of lines of code (LOC) between

two library versions, because we consider it to be the most de-

tailed representation of changes available. Differences in LOC have

the problem that when the contents of a method or file completely

changes but the LOC stays exactly the same, no difference is de-

tected. Differencing as used by version control systems was also

considered to be inaccurate for the purpose of this analysis since

it is sensitive to irrelevant changes in whitespace and comments. 

12.7. Other applications of change impact analysis 

The approach to inject breaking changes as described in this pa-

per can be used to perform general change impact analysis as well,

without breaking changes or libraries. For instance, the Eclipse

compiler could also be used in a similar way to perform a “mu-

tation analysis” of public interfaces, where random changes are in-

jected in the public API to determine how systems using that API

would react. This is similar to the work performed in this paper,

but would not be limited to breaking changes that actually occur.

The data as obtained by our approach could also be used to con-

struct a “profile” for a library, which would indicate the expected

amount and spread of errors when updating a certain library. We

expect that different libraries will have different profiles and some

libraries are easier to update than others, partly due to design and

partly due to the problem the library solves. 

13. Threats to validity 

13.1. Transitive closure of update pairs 

A potential issue of internal validity of our approach is the cal-

culation of the transitive closure of all future versions of each li-

brary. This was done for three reasons. First, in practice, develop-

ers can update to any later version of a library from their current

version and can skip versions “in between”. Second, the number of

breaking changes between, for example, version 1 and version 3 of

a library is not the sum of the breaking changes between version

pairs 1–2 and 2–3. This also gives rise to the need to consider each

update pair separately. Third, the regression analyses as performed

in this paper are not influenced by the larger amount of data since,

statistically, estimated coefficients will not be influenced by the

possible duplication in the data. We use robust regression and ro-

bust standard errors to mitigate any risk rising from data duplica-

tion, which are common statistical methods to deal with this type

of problem ( Andersen, 2008 ). 

13.2. Error counting 

Another issue of internal validity is the “masking” of compila-

tion errors, which happens when compiling Java code with Eclipse

and the JDT. If a package import cannot be found, for instance, the

compiler will never reach compilation errors further down the file

because it stops compiling. It is unknown how many times this
appens in our dataset. It would mean, however, that the true

mount of rework to fix “masking” compilation errors would be

nderestimated using our approach since fixing these errors would

eveal new, previously unreported compilation errors which would

ave to be fixed in turn. On the other hand, collections of compi-

ation errors can be manifestations of a change in the same object,

uch as a removed method, field or parameter. Fixing such errors

ould be faster than fixing the same amount of unrelated errors,

or instance with a global search-and-replace action. More research

s needed to assess the strength of over- or underestimation of the

ework effect due to these two reasons. 

3.3. Release dates 

The release dates of libraries as obtained from the central

aven repository are sometimes incorrect, as demonstrated by the

isproportionally large number of libraries with a release date of

ovember 5th, 2005 (2321, 1.5%). These data points were excluded

rom our analysis, but we do not have absolute certainty of the

orrectness of the remaining release dates. Another indication that

elease dates were not always correct is the fact that an ordering

ased on release dates and an ordering based on version numbers

f a single artifact does not always give the same rankings. In these

ases, the ordering in version numbers was assumed to be correct.

hese possibly invalid data points do influence our analysis on the

umber of days between releases, however, but we assume that

n average, our statistical analyses provides us with a robust aver-

ge. A manually checked sample of 50 random library versions and

heir release dates on the corresponding websites were all correct.

his sample gives us confidence in the overall reliability of the re-

ease dates in the repository. 

3.4. Version strings 

We only investigated the changes in subsequent library versions

hich both have a “proper” version string, i.e. a specified major

nd minor release number. When a prerelease string was included

n the version number, no analysis was performed on the number

f breaking changes since semver does not state whether prere-

eases can contain breaking changes. This does not introduce a bias

n our study since we want to test whether libraries that do have

 proper versioning scheme adhere to semver . 
Not all subsequent versions of methods could be recognized

hile scanning for the deprecation patterns in Section 10 . Library

ersions were parsed separately, leaving the problem that different

bjects representing the same method in different versions should

e connected with each other. For performance reasons, this was

one by text matching of method names and the number of pa-

ameters. Overloaded methods with the same number of parame-

ers were not taken into account in this analysis. Future work could

urther investigate whether deprecation patterns are different for

ethods with overloaded versions with the same number of

arameters. 

3.5. Deprecation tags 

The low number of deprecation tags detected in the Maven

epository is surprising. To make sure all deprecation tags were

ecognized, we scanned these tags in two different ways. First, a

extual search was performed to search for literal occurrences of

he string “@Deprecated ”. Second, when a deprecated tag was

ound in a library, the complete library was parsed and AST’s were

reated. This approach therefore makes it impossible to miss a

eprecated tag. In future work, we could further investigate causes

or the low number of deprecated tags. 
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3.6. Selection of independent variables 

With respect to construct validity, we chose a set of indepen-

ent variables in our analysis, such as maturity, size, and the pop-

larity of a library as variables that could influence rework effort

nd dispersion of errors across systems. We did not have the goal

o create an exhaustive list of all possible variables that could in-

uence rework effort and dispersion. There are possibly other vari-

bles at work that influence rework and dispersion besides the

nes investigated in this paper, which could significantly alter our

nalysis and conclusions. The restriction to investigate only the 10

ost frequently occurring change types could also influence our

onclusions. In future work, the influence of other variables can be

nvestigated further. 

3.7. Small R 

2 

The regression analysis in Table 12 has an R 2 of 58.68%, while

he regression analysis in Table 16 has an R 2 of only 13.33%. Con-

erns may rise about the limited explanatory power of these mod-

ls. The first model only includes 10 most frequently occurring

reaking changes, which means that any change that cannot be

xplained by the independent variables is not taken into account.

n other words, 40% of the edit script is explained by changes that

annot be related to the 10 breaking change types. This is expected

ince it is likely that there will be a large amount of changes which

re not associated with any breaking change, such as methods that

ave a changed implementation without changing their method

eaders. 

The other model has an even lower R 2 , but this is expected

iven the setup of the experiment. The model incorporates fac-

ors associated with L y to explain the dispersion of errors in S x .

he most important factors that would explain this dispersion can

ikely be found in S x . For instance, a modular design of S x with bet-

er encapsulation could mean that the calls to a certain library, for

nstance a database library, are located in a single class. Measuring

hese factors, however, are not the goal of the model. The p -Value

f the model (0) indicates that the model is highly significant. Be-

ause of the low R 2 of the model, the model should only be used

or explanatory purposes, and not for prediction. 

3.8. External validity and generalizability 

Our findings are based on an exploration of semantic versioning

rinciples in the Maven repository. It is unknown whether the re-

ults can be reproduced in other software repositories mentioned

efore, such as NuGet, OSGi bundles, Ruby gems, 28 or, for exam-

le, the GitHub repository. We have already seen that NuGet has

 different approach to update dependencies than Maven, but how

ften this actually introduces breaking changes with compilation

rrors is unknown. As mentioned before, other guidelines similar

o semver have been released, so adherence to these guidelines

an be investigated in a similar way as done in this paper. Further

esearch is needed to determine whether the patterns as found in

his paper hold in (industrial) software systems instead of open-

ource software libraries. 

4. Conclusion 

In this paper, we have looked at semantic versioning princi-

les as adopted by over 10 0,0 0 0 open source libraries distributed

hrough Maven Central. We investigated to what degree the se-

antic versioning scheme as used by library developers provide
28 http://www.rubygems.org . 

C  

 

 

ibrary users with signals about breaking changes in that release.

emantic versioning provides developers with a clear set of rules

egarding the use of major, minor and patch version numbers, and

e have tested these rules on our dataset. 

Our findings are as follows: 

• The introduction of breaking changes is widespread: Around

one third of all releases introduce at least one breaking change.

We see little difference between major and minor releases with

regards to the number of breaking changes: One third of the

major as well as one third of the minor releases introduce at

least one breaking change (RQ1). 
• Breaking changes have a significant impact on client libraries

by introducing compilation errors that need to be fixed before

a library upgrade can be performed (RQ2). 
• The number of breaking changes in non-major releases has only

decreased marginally over time (RQ3). 
• Updates of dependencies to major releases are most often per-

formed in major library updates, and similarly for updates of

minor and patch releases and dependencies. Major releases of

dependencies tend to take longer to be upgraded than minor

or patch releases. There exists a small influence of the number

of backward incompatibilities and of the amount of change in

new versions on this lag (RQ4). 
• Bigger libraries tend to introduce more breaking changes and

errors. Libraries do not grow when they become more mature,

on average, and more mature libraries do not introduce more

breaking changes (RQ5). 
• Developers do not follow deprecation guidelines as suggested

by semantic versioning. Most public methods are deleted with-

out applying a deprecated tag first, and when these tags are

applied to methods, these methods are never deleted in later

versions (RQ6). 
• The size of a client library can influence the dispersion of errors

in client systems when breaking changes are introduced in the

library (RQ7). 

We can conclude that in general, developers spend little effort

o communicate backward incompatibilities or deprecated methods

n releases to users of their libraries. This manifests itself through

 large number of breaking changes in major releases and also be-

omes visible in the unstructured way of labeling and removing

eprecated methods. This leads to a significant number of compi-

ation errors in client systems using these libraries. 

Although one can argue that not all developers may be aware

f semantic versioning principles in specific, we have assumed that

ost developers are aware of the intent of these principles: pro-

iding information about the amount of work done in a release

nd providing information about the stability of the interface of

he library. 

We have demonstrated what the impact can be when develop-

rs ignore backward compatibility. We therefore argue that seman-

ic versioning principles should be embraced more widely by the

eveloper community. 
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