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Abstract—Trustworthy and robust deployment of AI applica-
tions requires adherence to a range of AI engineering best prac-
tices. But, while professionals already have access to frameworks
for deploying AI, case studies and developer surveys have found
that many deployments do not follow best practices.

We hypothesize that the adoption of AI deployment best
practices can be improved by finding less complex framework
designs that combine ease of use with built-in support for best
practices. To investigate this hypothesis, we applied a design
science approach to develop a new framework, called GreatAI,
and evaluate its ease of use and best practice support.

The initial design focusses on the domain of natural language
processing (NLP), but with generalisation in mind. To assess
applicability and generalisability, we conducted interviews with
ten practitioners. We also assessed best practice coverage.

We found that our framework helps implement 33 best prac-
tices through an accessible interface. These target the transition
from prototype to production phase in the AI development
lifecycle. Feedback from professional data scientists and software
engineers showed that ease of use and functionality are equally
important in deciding to adopt deployment technologies, and the
proposed framework was rated positively in both dimensions.

Index Terms—AI engineering, robustness, trustworthiness, de-
ployment, best practices

I. INTRODUCTION

Even though industry professionals already have access
to numerous frameworks for deploying AI correctly and
responsibly, case studies and developer surveys have found
that a considerable number of deployments do not follow
best practices [1]–[5]. Utilising state-of-the-art AI models has
become reasonably simple; deploying them correctly is as
intricate and nuanced as ever.

We hypothesize that the primary reason for the low adoption
rate of best practices is the short supply of professionals
equally proficient in the domains of data science and soft-
ware engineering. Nevertheless, practitioners could rely on
frameworks to achieve some level of automation and maturity
in their deployment processes. However, the barrier of entry
for using such existing libraries is too high, especially when
compared with the simplicity of AI-libraries. Moreover, the
support for best practices in these frameworks is either lacking
or requires considerable effort and advanced skills.

Therefore, we used the design science approach [6] to
develop a new framework that combines ease of use with built-
in support for AI engineering best practices, and evaluated the
frawework on its accessibility and best practice support. Basi-
cally, to use the framework, users place a couple of annotations
into their code, may use some convenient utility functions,
and subsequently obtain a rich set of capabilities, including
versioning, logging, tracing, parallelisation, and more. The
framework’s initial design is focused on the domain of natural
language processing (NLP), but with generalisation in mind.

Through literature review, framework design and evaluation,
we attempt to answer the following research questions:
RQ1 What are the barriers for adopting AI engineering best

practices with existing deployment frameworks?
RQ2 What AI deployment framework design could help to

lift those barriers?
RQ3 To what extent can an AI engineering framework auto-

matically implement best practices?
RQ4 How do practitioners perceive the utility, ease of use and

generalisability of the new framework design?
The paper addresses these questions as follows. Section II

investigates the adoption problem (RQ1). Section III outlines
our design science approach to framework design. Section IV
presents and justifies the actual design (RQ2). Section V
covers the evaluation of the design on best practice coverage
(RQ3) as well as utility, ease of use, and generalisability
(RQ4). Section VI presents overall conclusions.

II. BACKGROUND

Before designing our framework, we review the accessibil-
ity of AI development, the current state of AI deployment
practices, and existing solutions that support AI deployment.

A. Accessible AI

In recent years, there has been a proliferation of highly
accessible AI-libraries, many providing reusable models. For
example, FLAIR [7] and Hugging Face’s transformers [8]
let developers access state-of-the-art models and methods in
a couple of lines of code. Using transfer-learning, Hugging
Face enables its users to leverage vast amounts of knowledge



learned by pretrained models (such as BERT [9] and its many
variations) and fine-tune them for their specific use case. The
API exposing this is also very accessible. Other prominent
examples are SpaCy [10], Gensim [11], scikit-learn [12], and
XGBoost [13]. The situation is similar in all subdomains of
artificial intelligence: some domain expertise is — admittedly
— beneficial but not a hard-requirement. This, combined
with the exponentially increasing computing power affordably
available to consumers and businesses alike [14], results in AI
that is accessible by many.

B. State of the AI deployment practices

In contrast, the software landscape around packaging, de-
ploying, and maintaining AI/ML, and in general data-heavy,
applications paints a different picture.

When looking at AI/ML code in practice through the lens of
technical debt, Sculley et al. [5] emphasise the repercussions of
writing glue code between the algorithms and different systems
or libraries and define it as an anti-pattern. The consequence
of this is the advice against using generic libraries because
their rigid APIs may inhibit improvements, cause lock-in, and
result in large amounts of glue code.

Haakman et al. [2] interviewed 17 people at ING, a large fin-
tech company undergoing a digital transformation to embrace
AI. They found that the existing tools for ML do not meet the
particularities of the field. For instance, a Feature Engineer
working in the Data & Analytics department explained that
regularly spreadsheets are preferred over existing solutions
like MLFlow for keeping track of experiment results. The
reason behind this is simplicity. Additionally, multiple other
interviewees described the need to self-develop (or highly-
customise) dashboards for monitoring deployed models, re-
sulting in many non-reusable solutions across the company
for the same problem. The authors conclude that there is
a research gap between the ever-improving state-of-the-art
(SOTA) techniques and the challenges of developing real-
world ML systems.

In a case study at Microsoft, Amershi et al. [3] interviewed
14 people and surveyed another 551 AI and ML professionals
from the company. One of the main concerns surfaced was
relating to automation which is a vital cross-cutting concern,
especially for testing. At the same time, a human-in-the-loop is
still favoured. The survey data pointed out the difficulty posed
by integrating AI, especially in the case of less experienced
respondents. This was elaborated on by describing the pref-
erences of software engineers as striving for elegant, abstract,
modular, and simple systems; in contrast, data tends to be of
large volume, context-specific and heterogeneous. Reconciling
these inherent differences requires significant effort. Never-
theless, Microsoft manages to overcome this with a highly
sophisticated internal infrastructure.

Using AI is not unique to large corporations; in a study
conducted with three startups [4], the aim was to fill in the gap
of understanding how professionals develop ML systems in
small companies. Overall, the results showed they have similar
priorities to that of large companies, including an emphasis

on the online monitoring of deployed models. However, less
structure is present in the development lifecycle. Similarly,
Thiée [15] described the slow but ever-growing rate of ML
adoption by small and medium-sized enterprises (SMEs).

Serban et al. [1], [16] described the results of their global
surveys aiming to ascertain the SOTA in how teams develop,
deploy, and maintain ML systems. In [1], they compiled a
set of 29 actionable best practices. These were analysed and
validated with a survey of 313 participants to discover the
adoption rate and relative importance of each. For example,
they determined the most important best practice to be log-
ging production prediction traces; however, the adoption was
measured to be below 40%. In more than three-quarters of the
cases, newcomers to AI reported that they partially or not at all
follow best practices. This tendency decreases with more years
of experience, reaching a maximum adoption rate of just above
60%. In [16], Serban et al. identified another 14 best practices
that specifically concern trustworthy AI. They strove to com-
plement high-level checklists with actionable best practices.
Analysing 42 survey responses revealed a familiar pattern:
most best practices had less than 50% adoption.

John et al. [17] compared and contrasted recent scientific
and grey literature on AI deployments from which they ex-
tracted concrete challenges and practices. They also observed
that most companies are placing many more models into
production than in previous years. Additionally, they pointed
out that numerous deployment techniques are absent from con-
temporary literature, which is speculated to be caused by the
immaturity of deployment processes employed in academia.
Because for instance, most models in scientific literature
experience only initial deployment and are not constantly
replaced or refreshed as their performance degrades over time.

Finally, in a follow-up study to [17], Bosch et al. [18]
organised and structured the problem space of AI engineering
research based on their 16 primary case studies. The authors
noted the increasing and broad adoption of ML in the industry
while also emphasising that the transition from prototype
to production-quality deployment proves to be challenging
for many companies. Solid software engineering expertise is
required to create additional facilities for the application, such
as data pipelines, monitoring, and logging. They defined de-
ployment & compliance to be one of the four main categories
of problems and described it as the source of ample struggle.

C. Existing solutions

It is noticeable that given enough resources and at the
scale of 4195 AI professionals, Microsoft managed to create
a comprehensive in-house solution. A similar impression is
given by Uber [19]; they built a highly sophisticated infrastruc-
ture using techniques from distributed and high-performance
computing. Though the authors note that this solution still has
shortcomings in the form of rigidity (number of supported
libraries and model types), it also allows for the easy extension
of the system. It is not surprising that both high-tech Fortune
500 companies overcame the problems presented by deploying
AI. We can learn from their approaches; nonetheless, using



them may be infeasible for individuals and SMEs. Thus, the
issues remain for the majority of practitioners.

Luckily, the open-source scene of AI/ML/DS tools, libraries,
frameworks, and platforms is thriving. Additionally, there is a
considerable number of closed-source — usually platforms-as-
a-service (PaaS) — solutions next to them. Let us look at some
prominent examples. Table I shows a high-level comparison
of frameworks along the dimensions in which practitioners
reportedly face difficulties in the Deployment stage of the
CRISP-DM model [20].

IBM’s AutoAI [21] promises to provide automation for the
entire machine learning lifecycle, including deployment. It is
a closed-sourced, paid service which — from their documen-
tation — seems to focus primarily on non-technical users by
providing them with a graphical user interface (GUI) for au-
thoring models. The restrictions caused by the encapsulation of
the entire process can be severe: the challenges of integration
were emphasised above [5]. Additionally, an engineer working
on Microsoft’s comparable solution, the Azure ML Studio,
highlighted that once users gain enough understanding of ML,
such visual tools can get in their way, and they may need to
seek out other solutions [3]. Unfortunately, the main value
proposition of Azure ML Studio is also to provide a GUI
for laypeople, and it has also been set to be retired by 2024.
Its successor is Azure Machine Learning which shares many
similarities with AWS’s SageMaker suite [22].

SageMaker offers the most comprehensive suite of tools
and services; most importantly, it has a set of features called
AWS SageMaker MLOps. This provides easy and/or default
implementations for multiple industry best practices described
in [1], [16], [23]. Among others, it promotes using CI/CD,
model monitoring, tracing, model versioning, storing both data
and models on shared infrastructure, numerous collaboration
tools, etc. Nonetheless, SageMaker does not enjoy broad
adoption, as indicated by the survey data. The cause of this
may be the lack of a self-hosting option and its relatively
high prices: many companies prefer on-premise hosting for
privacy, and financial reasons [18]. Additionally, vendor lock-
in and possibly — in the case where it is not already used for
the project — the initial effort required for setting up AWS
integration could be likely deterrents.

When it comes to open-source libraries, we can find the
MLOps libraries of both TensorFlow and PyTorch: Tensor-
Flow Extended (TFX) [24] and TorchX. TFX comes with a
more mature set of features with the caveat that initial time
investment is needed for their setup. The features of TorchX
only concern the distributed deployment to a wide range of
providers, including Kubernetes (K8s), AWS Batch, or Ray
[25]. There is no augmentation for most deployment best
practices. Given the tight coupling between these libraries and
their corresponding ML frameworks, they cannot generalise to
models or algorithms of other frameworks and technologies.

Open-source platforms also exist, such as MLflow and
Seldon Core. They both rely on Kubernetes to provide their
features. MLflow emphasises the training phase (in deploy-
ment, it lacks a feedback loop which is essential for reaching

many of the best practices), while Seldon Core focuses on the
deployment stage. The latter comes integrated with a powerful
explanation engine, Alibi Explain [26]. It also boasts the most
comprehensive suite of features, including outlier detection,
online model selection (with multi-armed bandit theory), and
distributed tracing. Thus it seems an ideal candidate for the
title of framework for robust end-to-end AI deployments. Its
only downside is the amount of complexity propagated to its
clients: it is built on top of Kubernetes and relies on Helm,
Ambassador/Istio, Prometheus, and Jaeger for its features.
Hence, the first step in using it is setting up a K8s cluster with
all the required components; then, when it comes to model
deployment, a Kubernetes configuration file must be created
to use Seldon’s Custom Resource Definition. These are minor
obstacles if the project is already built on top of K8s; however,
even then, software engineers with solid cloud and DevOps
backgrounds are actively required to use Seldon Core.

Additionally, increasing attention is given to ML deploy-
ments in embedded systems both from a theoretical [23] and
practical [27] point of view. Prado et al. [27] survey the
available deployment frameworks and end-to-end solutions,
including those for embedded devices. They note the ineffi-
ciencies of these that come from the lack of features and too
much rigidity. They introduce their framework for embedded
AI deployments, which can be used out-of-the-box but also lets
users easily replace and extend its pipeline to fit their changing
needs and advancements in the field. At the same time, Meenu
et al. [23] present and compare different architectural choices
for large-scale deployments in edge computing. They also note
that: “...there is a need to consider and adapt well-established
software engineering practices which have been ignored or
had a very narrow focus in ML literature”.

In summary, while surveys and case studies have shown
the industry’s continuous struggle to evolve prototypes into
robust and responsible production-ready deployments, plat-
forms aiming to help overcome this challenge lack widespread
adoption. Lack of adoption is likely due to the complexity and
rigidity of current frameworks, making them are inadequate for
many contexts, especially in cases where teams lack extensive
expertise in cloud, operations, and more generally, software
engineering (RQ1).

III. METHODS

The chosen methodology for this study is Design Science
which emphasises the need to design and investigate artifacts
in their contexts [6]. It consists of a design and an empirical
cycle. The aim of the former is to improve a problem context
with a new or redesigned artifact, while in the latter, the
problem is investigated, and its potential treatment is validated.

A. Design cycle

We carried out the design cycle by first formulating frame-
work requirements, then designing and implementing an initial
version, and then iteratively refining the design by applying
the framework in two subsequent case studies and adapting the
framework based on case study findings. The resulting design,



TABLE I
HIGH-LEVEL COMPARISON OF POPULAR AI DEPLOYMENT PLATFORMS AND LIBRARIES.

AutoAI Azure ML SageMaker TFX TorchX MLflow Seldon Core
Open-source1 ✓ ✓ ✓ ✓

Self-hosted1 ✓ ✓ ✓ ✓

Vendor-agnostic2 ✓ ✓ ✓ ✓

AI-agnostic2 ✓ ✓ ✓ ✓

E2E feedback3 ✓ ✓ ✓

Distributed monitoring3 ✓ ✓ ✓ ✓ ✓* ✓

Online model selection3 ✓* ✓ ✓ ✓

Versioning3 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Quick setup4 ✓ ✓

No DevOps dependencies4 ✓

1 For privacy and accountability reasons. [18]
2 Minimising required glue code. [5]
3 Implementing best practices. [1], [16], [17]
4 Easy integration into existing processes. [2], [15]
* Only partial support.

described below in Section IV provides a tentative answer to
RQ2, which is then evaluated in Section V.

In this paper, we will not report on the details of the
case studies. In short, they focus on individual components
of a growing commercial platform which aims to find tech-
transfer opportunities in academic publications. The primary
input of the system as a whole is a set PDF files, while the
output is a list of metrics describing various aspects of each
paper, such as interesting sentences, scientific domains, and
contributions. The result also includes a predicted score used
for ranking. This ranking is subsequently processed by the
business developers of Technology Transfer Offices (TTOs)
of multiple Dutch and German universities, who later give
feedback on the results.

Overall, this practical problem context carries the properties
of typical industry use cases: it utilises a wide range of
natural language processing (NLP) methods, contains complex
interactions between the services, benefits from the integration
of end-to-end feedback, and has to provide the clients with
a platform that they can rely on within their organisation’s
core processes. Since the final ranking affects real people,
explainability and robustness are also central questions.

B. Empirical cycle

To answer RQ3, we compare the features of our framework
with best practices found in literature and encountered in
the case studies. For each supported best practice, we will
establish a degree of support, ranging from Fully automated,
to Supported, and Partially supported.

To answer RQ4, we conduct interviews with software en-
gineers and data scientists with varying levels of professional
background. The interview candidates were recruited through
the personal network of the first author, in the second degree:
direct acquaintances were asked to seek out people from
their professional networks with any connection to AI/ML.
After the first few interviews, participants were also asked to
suggest other candidates, preferably from different subfields.
After two iterations of reaching out to potential interviewees
personally, ten engineers and researchers eventually responded
positively and participated in the study. Albeit the sample
size is small, it still represents a wide range of organisation

types: experts were included from startups, consultancies,
government organisations, and research companies.

First, before their interview, participants are requested to
complete a questionnaire about their last completed AI project;
the questions refer to the best practices implemented by our
framework. They are also advised to take a quick look at the
tutorial page of the documentation.

The interviews are divided into two parts. In the first
part, after a brief introduction, interviewees are asked to
solve a real-world deployment task by finishing a partially
completed example project using the framework. This is a
more straightforward instance of the AI development lifecycle
presented in the tutorials. They are also encouraged to think
aloud so their feedback can be noted. Successfully completing
the task creates a system implementing a known number of
best practices. This way, the added value —in terms of a larger
number of implemented best practices— can be quantitatively
analysed by comparing the qualities of the finished implemen-
tation with the previously given answers to the questionnaire.
The target duration for the interviews is approximately one
and a half hours.

We follow the guidelines proposed by Halcomb et al. [28]
for collecting information from interviews and reporting it.
This reflexive, iterative process starts by recording participants
(with their permission) and concurrent note-taking. Reflective
journaling is immediately done post-interview, which is sub-
sequently extended and revised by listening to the recordings.
Afterwards, we interpret the gathered information by applying
the methodology of thematic analysis [29].

The second half of the one-on-one sessions consists of a
short survey allowing us to evaluate our framwork against
the Technology Acceptance Model (TAM) [30]. TAM has
been widely applied in literature [31], and due to its gen-
eral psychological origins, it proves to be effective in other
areas of technology, not just software [32]. We employ the
parsimonious version of TAM, which has been measured to
have similar predictive power to that of the original TAM
while having fewer variables [33]. Parsimonious TAM ob-
serves three interconnected human aspects that influence the
actual behaviour (adoption): perceived usefulness, perceived
ease of use, and intention to use. Participants are asked ten



questions corresponding to these aspects of their experience
using our framework. The internal consistency of the answers
is calculated using Cronbach’s Alpha [34], after which we
reflect on the responses.

IV. DESIGNING THE FRAMEWORK

Within the AI Engineering lifecycle, the design of our
framework will be focussed on the deployment activities,
which we have seen in Section II to be critical for transition-
ing from prototype to production, yet challenging for many
practitioners. This focus is highlighted in Figure 1.

It is interesting to mention that there is a proliferation
of platform/software as a service (PaaS/SaaS) products for
deploying AI. These may look intriguing, but they tend to
only focus on getting code easily deployed in the cloud: AI
best practices are not prioritised in this setup. Nevertheless, in
many cases, it may be a suitable option to use such a service,
and these can also complement our framework, as illustrated
in Figure 1: first, the prototype is transformed into a service
in the form of a common software artifact that adhere to best
practices. Then, it is either deployed using a deployment SaaS
or the organisation’s existing software deployment setup.

A. Requirements
The best practices we aim to support are a subset of those

compiled by Serban et al. [1], [16] and John et al. [17]. These
best practices are addressed in requirements described below.

a) General: Our framework should be broadly applica-
ble. In particular, we want our framework to be compatible
with a wide range of AI libraries. Large projects frequently
end up depending on numerous packages, each of which may
impose some restrictions on the code: since these all have to be
satisfied simultaneously, this can result in severe constraints.
The open-source scene of data-related libraries is vibrant. To
take the example of data validation, there are at least four
popular choices which offer varying but similar features: Alibi
detect, Facets, Great Expectations, and Data Linter [35]. The
responsibility of choosing the most fitting solution falls on
the user. Our framework should not limit them with respect to
such choices.

A limit to generality will be posed by the choice of pro-
gramming language, which we restrict to Python. Fortunately,
Python is currently almost the de facto standard programming
language for data science, so implementing the framework in
it should not too severely limit its general applicability.

b) Robustness: In software development, robustness can
be achieved by preparing the application to handle errors
gracefully, even unexpected ones [36]. Errors can and will
happen in practice: storing and investigating what has led to
them is required to prevent future ones. In the case of ML,
errors might not be as obvious to detect as in more traditional
applications (see the above-mentioned data validators). Even
if only a single feature’s value falls outside the expected
distribution, unexpected results can happen. In cases where
this might lead to real-world repercussions, extra care has to
be taken to construct as many safeguards as practicable. The
framework should support its users in this.

c) End-to-end: In this case, it refers to end-to-end feed-
back. That is, feedback should be gathered on the system’s
real-world performance, which should be taken into account
when designing/training the next iteration of the model. Static
datasets may fail to capture the changing nature of real life and
can become outdated if they are not revised continuously. A
well-packaged deployment should make it trivial to integrate
new training data.

d) Automated: The available time of data scientists and
software engineers is limited and expensive. For this reason,
humans should only be involved when their involvement
is necessary. Steps in the development process that can be
automated without negative consequences must be automated
in order to achieve efficient development processes and let the
experts focus on the issues that require their attention the most.

e) Trustworthy: As detailed in the Ethics guidelines for
trustworthy AI, human oversight, transparency, and account-
ability are key requirements for trustworthy AI applications.
For increasing public acceptance and trust while minimising
negative societal impact, trustworthiness is essential.

B. Design principles

We follow the Unix philosophy [37], [38] of software
design, especially the design goal to write programs that do
one thing and do it well. Apart from providing a clear and
simple picture of the intended use cases for the library, this is
also in line with the main notion of A Philosophy of Software
Design [39]: APIs should be narrow and deep.

A narrow width refers to having a small exposed surface
area, i.e. having a small number of functions and classes in the
public API. In contrast, depth implies that each accomplishes
an involved, complex goal. In a way, the width of an API is
the price users have to pay (the effort required for learning it)
to use it, while the depth is analogous to the return they get
from it. Having to learn little and being provided with a lot
of functionality maximises return on investment (ROI), hence,
developer experience (DX).

Moreover, the theoretical frameworks presented in The
Programmer’s Brain [40] provides us with explanations and
vocabulary from psychology for arguing about the cognitive
aspects of API design. In the following, two of them will be
used for detailing the design principles: cognitive dimensions
of code bases (CDCB) which is an extension of the cognitive
dimensions of notation (CDN) framework [41], and linguistic
anti-patterns [42]. The former comes with a set of dimensions
describing different (often competing) cognitive aspects of
code that influence one’s ability to perform specific tasks.

Linguistic anti-patterns provide guidelines for improving
consistency and decreasing the false sense of consistency when
there is none. Also, choosing the right names for identifiers
can help activate information stored in the long-term memory,
making it quicker to comprehend and easier to reason about
the code [43]. Finding the most accurate and useful names is
more challenging than it first seems. Accuracy and usefulness
are already often competing goals: the more precise the name,
the longer and, therefore, less convenient to use [44]. In

https://github.com/SeldonIO/alibi-detect
https://github.com/SeldonIO/alibi-detect
https://github.com/PAIR-code/facets
https://github.com/great-expectations/great_expectations
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai


Fig. 1. Usual process steps (based on [17]) in the development lifecycle of a data-heavy software solution. The dashed arrows denote optional paths: after a
prototype has been completed, there are multiple options for its deployment. The steps with blue background show the primary scope of our framework.

short, good names are essential to good APIs; consciously
considering the implications of names must be an integral part
of the design process.

Nonetheless, simple APIs come with a high technical cost.
The library has to implement these in a way that still allows
for high performance in production [45] and avoids being tied
to specific libraries or technologies. Inspiration for the latter
may be gained from the ML pipelines of Prado et al. [27]: they
show that more freedom can be achieved with plug-and-play
steps and preconfigured defaults.

C. Default configuration

Existing frameworks frequently suffer from the entangle-
ment of numerous levels of abstractions. Instead of exposing
each implementation detail and encouraging users to interact
with most of them, these can be abstracted away in a more
high-level layer. Even where configuration may be helpful for
advanced users, default values can still be chosen automati-
cally while providing an override option where necessary.

For example, tracing the evaluations and the model versions
used in a distributed fashion is very much expected of a
trustworthy system. Hence, turning this feature on by default
but allowing opting-out from it can result in less scaffolding
required from the library’s users. It also decreases their up-
front cognitive load, which by definition flattens the learning-
curve [40]. Similar features can be imagined for providing
a service API for the algorithms, giving feedback, marking
outliers, and more.

Being automated is listed as a requirement, but it is im-
perative to only automate for simplifying and not for hiding
decisions. More precisely, guessing must not be a part of
automation. For instance — an otherwise handy WebGL
library — TWGL.js, has a feature for automatically guessing
the type of vectors based on their names. Suppose it matches
the /colou?r/i pattern. In that case, it is treated as a
vector with three components. It is easy to imagine that this
can help in certain scenarios. Still, it does so at the cost of
immense confusion when correctly renaming a variable breaks
the application. In CDCB, this equates to scoring high on the
dimension of Hidden dependencies and low on Visibility.

Learning from this, any guessing must be avoided to create
a pleasant API. However, this conflicts with providing de-
faults for each configuration value. Even if these would be

reasonable defaults derived from educated guesses, they are
still merely guesses. Nevertheless, if the users were required
to specify each configuration option, that would lead to vastly
more boilerplate code. This verbosity is captured by the
Diffuseness dimension of CDCB and should be minimised.

To resolve this conflict, our framework should have recom-
mended values instead of defaults. This can mean a context
object (as suggested in [39]), which contains the result of
each design consideration that has to be made for a service’s
deployment. If not configured manually, the recommended
values are applied automatically, just like defaults. However,
the values chosen for each parameter must be clearly high-
lighted. Coming from the library’s single responsibility, the
number of parameters should not be immense; hence, the user
can be expected to comprehend them instead of just being
overwhelmed and skipping them.

This way, the library attempts to notify its user about
the existence of these decisions but does not force them
to decide manually. As a result, no initial configuration is
needed for starting out with the library (high Provisionality,
low Diffuseness), and the dependencies are not hidden since
they are explicitly highlighted.

D. Documentation

The library must have quality documentation for all cate-
gories. Accordingly, for structuring it, the Diátaxis philosophy
is preferred [46] which prescribes dividing documentation
into 4 parts along 2 axes: practical-theoretical and passive-
active consumption. The four quadrants derived from this are
tutorials, how-to guides, references, and explanations.

Once again, we might notice two competing interests: the
level of detail and the length of the documentation. For exam-
ple, FastAPI, a popular Python web framework, has extensive
descriptions and explanations on all topics related to Python’s
import system, the HTTP protocol, concurrency, deployment,
and more. The actual framework’s documentation is sprinkled
over these overly broad topics. This is undoubtedly helpful
for beginners to acquire knowledge from a single place. Yet,
this high level of accessibility actually hinders the process of
finding the relevant sections; in CDCB, this shows a trade-off
between the support of Searching and Comprehension tasks.
Diátaxis’ take is that linking to external resources about the



library’s domain is welcome, but the documentation must have
a single responsibility: describing the library itself.

A large portion of software documentations is automatically
generated from source code, and this has the advantage of
always keeping it in sync with code changes. However, it
might also signal that the API is too large because it is
inconvenient for the developers to document it by hand. Strik-
ing the right balance between handcrafted and automatically
extracted documentation may be a vital component of good
documentation.

When it comes to example code, showing at least a minimal
starter code and the way of customising it has to be showcased
front and centre. It is a well-known observation that developers
only read the documentation when they are stuck, and there
might be some merit to this. Helping them not get stuck, by
providing a starter code from which they can explore the API
using IntelliSense-like solutions, should be preferred. Take the
example of another popular Python web framework, Flask, at
this time, has 324 homogeneously styled links on its landing
page. Out of these, only two lead to the quick-start code. Of
course, it is not hidden, but we argue that the DX could be
improved by displaying where to start more prominently.

E. Developer experience
A key component of good DX is Progressive evaluation

through which development can become a highly iterative,
experimental process. This is well-understood by popular data
science tools, such as Jupyter Notebooks. Our framework
also has to support some level of this, for example, in the
form of auto-reload on code changes. Further key ingredients
of good DX are consistency and discoverability. To give
one more example, the MySQL connector’s Python imple-
mentation has a cursor object which exposes a fetchone
method. Even though this naming scheme is not conven-
tional in Python since it does not follow PEP 8 at least the
API is intuitive: changing sql_cursor.fetchone() to
sql_cursor.fetchall() returns all items instead of just
one. Using good and consistent names is the key to good DX.

At the same time, Python codebases are rarely strictly
object-oriented (OO). They are a mix of the functional, data-
driven, and OO paradigms. Consequently, relying on classes
for grouping related functions is not always desirable; there-
fore, it is even more imperative to name similar functions
similarly. This helps discoverability and chunking [40], which
amounts to quicker comprehension.

F. Architecture
As laid out in Section IV-B, we strive for narrow and deep

interfaces; thus, it is time to address the depth component.
Our framework stands on the shoulders of numerous open-

source packages and integrates them to provide its various
features. These include: FastAPI, Plotly, mongoDB, Amazon
S3, Pandas, and matplotlib. Given a Python script or a Jupyter
notebook, our framework transforms the specified prediction
functions into a production-ready deployment, deployable ei-
ther as a Docker image, WSGI-server, or an executable relying
on uvicorn.

Fig. 2. The core architecture of the GreatAI framework illustrated with
syntax loosely-based on UML2 [47]. Given its framework nature, the expected
client project and the actor integrating it are highlighted; the associations
between the framework and the client project are achieved through the use of
decorators.

The general theme in the implementation is that each
best practice has its distinct, loosely-coupled functions or
classes. When collaboration opportunities arise, such as
persisting model versions into prediction traces, there are
three primary conduits for realising them: the context
object responsible for global configuration per process, the
FunctionMetadataStore specifying expected behaviour
of each prediction function, and the TracingContext
created anew for each prediction input (session).

After refining the framework with feedback gathered from
case studies and users, we ended up with the core architecture
presented in Figure 2. The implementation is mixed-paradigm,
combining the expressiveness of functional and the design
patterns of object-oriented programming (OOP) in order to
maintain an overall low complexity. Reflection is also utilised,
especially for run-time type-checking and generating the API
definitions and dashboard components. Regardless, the archi-
tecture is still presented with a syntax similar to the class
diagrams of UML2 [47] because it provides the freedom to
express even the non-OOP design aspects.

For brevity, Figure 2 does not show all fields and
some related entities have been combined, e.g. the
GroundTruthAPI box represents the add_ground_truth,
query_ground_truth, and delete_ground_truth



functions. The client project can access most presented enti-
ties, but these optional dependency arrows are not shown in the
diagram. The utilities submodule is also left unexpanded;
almost all of its functions are orthogonal with the exception
of parallel_map, which follows a textbook producer-
consumer model facilitated by queues and event signals [48].

V. RESULTS & DISCUSSION

We evaluated our final design by comparing its features to
best practices from literature, and by practitioner interviews,
tasks, and surveys. We discuss our findings regarding ease of
use, generalisability, and overall technology acceptance.

A. Features
Table II summarises the implemented best practices in the

context of methods found by prior surveys of scientific and
grey literature [1], [16], [17]. A Level of support is determined
for each best practice on a scale of Partially supported,
Supported, and Fully automated.

For instance, Use static analysis to check code quality is
Supported because the entire public interface of our framework
is correctly typed (including generics and asynchronous corou-
tines) and compatible with mypy and Pylance. This means
that when our framework is used in any Python project, various
tools can be applied to statically check the soundness of the
project’s integration. However, if the library’s user does not use
type hints in their code and it contains a more complex control
flow, it can only be partially type-checked. In short, this best
practice is supported, and a considerable part of it is already
implemented, but users should still keep in mind that they
might also need to make an effort to implement it fully. This
is not the case for Log production predictions with the model’s
version and input data because, by default, it is automatically
implemented when calling @GreatAI.create. Users can
still specify the exact expected behaviour, e.g., where to store
traces, additional metrics to log, or disabling the logging
of sensitive input. Nevertheless, the best practice is already
implemented reasonably well without user intervention.

In Table II, we added six additional best practices, which
are generally well-known software engineering considerations
that are also applicable to AI/ML deployments. These had not
explicitly made it into the aforementioned surveys; however,
according to the insights gained from our case studies, im-
plementing them has a positive effect on deployment quality.
In future research, attention could be given to their level of
industry-wide adoption and quantitative utility.

In short, a large number of best practices (17) can be
given a Fully automated implementation by our framework’s
design, and many others (16) can be augmented by the library.
This proves the feasibility of designing simple APIs using
the techniques of Chapter IV for decreasing the complexity
of correctly deploying AI services while still implementing
various best practices (RQ2).

B. Best practices survey
The practitioners were first asked to fill out a questionnaire

about their latest AI/ML project involving deployment. This

point-in-time measurement served as a baseline for the deploy-
ment quality they are used to. Analysing the results show that
the amount of software engineering experience has a moder-
ately strong correlation (rPearson = 0.67 with p = 0.0033)
with the overall number and extent of implemented deploy-
ment best practices. Interestingly but unsurprisingly, there is
no similar statistically significant relationship regarding the
amount of data science experience.

Best practice adoption is calculated by discarding the Not
applicable answers and projecting the 5-point Likert scale to
a range from 0 to 1, which is subsequently averaged over all
questions. The overall mean adoption rate/extent is just above
0.5, which equates to the Neither agree nor disagree label.
These data are in line with the findings of Serban et al. [1].

Because the 15 survey questions were compiled from the
Fully automated rows of Table II, they are all implemented
automatically when using our framework. Consequently, the
adoption rate/extent is doubled immediately just by wrapping
the inference function with @GreatAI.create. Moreover,
this provides further evidence for answering RQ3 showing the
extent of automatically implemented practices over deploy-
ments without our framework.

C. Technology acceptance
The participants filled out a form after finishing their first

deployment with our framework to provide data for assessing
technology acceptance. The survey contained ten questions
from three categories, which could be rated on a 7-point Likert
scale. The summary of the answers is presented in Table
III. The high Cronbach’s alpha values indicate strong internal
consistency [49] for each TAM dimension; thus, averaging the
responses per category is semantically meaningful.

Following the methodology of [50], the connections be-
tween the Perceived Utility (PU), Perceived Ease Of Use
(PEOU), and Intention To Use (ITU) dimensions of TAM were
analysed. Two statistically significant (P ≤ 0.05) correlations
were uncovered: between PU and ITU (rPearson = 0.81
with p = 0.0048); and PEOU and ITU (rPearson = 0.80
with p = 0.0068). Learning from the findings of prior case
studies, it is reasonable to believe that the perceived utility
and the perceived ease of use play an equally important role in
influencing users’ intention to use the deployment framework.

The assessment of ease of use lags behind the rest, but it
is still quite high. It may be possible that PEOU would go
up with further use. Nevertheless, the high perceived utility
implies that our framework shows its value early on. This,
combined with the correlations uncovered within the context’s
technology acceptance model, validates the hypothesis that
focusing on good API design is just as necessary as providing
practical features.

D. Task solving & exit interviews
To give qualitative depth to the presented quantitative re-

sults, it is time to discuss the main segment of the interviews.
The participants’ backgrounds covered a fascinating cross-
section of industrial AI/ML. The financial sector was repre-
sented by a researcher working on market prediction models

https://mypy.readthedocs.io/en/stable/index.html
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance


TABLE II
BEST PRACTICES AND THE LEVEL OF SUPPORT PROVIDED FOR THEM, WHERE Fully automated (✓✓) MEANS THAT NO ACTION IS REQUIRED

FROM THE USER, Supported (✓) ONLY AUTOMATES THE REASONABLY AUTOMATABLE ASPECTS, AND Partially supported (∼) PROVIDES
SOME USEFUL FEATURES, BUT THE USER IS EXPECTED TO BUILD ON TOP OF THESE.

Best practice Implementation Support
Use sanity checks for all external data sources1 @parameter ✓

Check that input data is complete, balanced, and well-distributed1 @parameter ∼
Write reusable scripts for data cleaning and merging (for NLP)1 utilities ✓✓

Make datasets available on shared infrastructure1 large_file ✓✓

Test all feature extraction code (for NLP)1 utilities ✓✓

Employ interpretable models when possible1 views ∼
Continuously measure model quality and performance1, 2 Feedback API ✓

Use versioning for data, model, configurations and training scripts1, 2 @use_model, versioning ✓✓

Run automated regression tests1
*_ground_truth ✓

Use continuous integration1 Docker Image, WSGI application ✓

Use static analysis to check code quality1 Fully typed API with generics ✓

Assure application security1 Code is automatically audited ∼
Automate model deployment, enable shadow deployment1, 2 Docker Image & scripts ✓

Enable automatic rollbacks for production models1, 2 Docker Image & scripts ∼
Continuously monitor the behaviour of deployed models1, 2 Dashboard, metrics endpoints ✓✓

Log production predictions with the model’s version and input data1 @GreatAI.create ✓✓

Execute validation techniques: error rates and cross-validation2
*_ground_truth ✓

Store models in a single format for ease of use2 save_model ✓✓

Rewrite from data analysis to industrial development language2 Jupyter Notebook deployment ✓

Equip with web interface, package image, provide REST API2 @GreatAI.create ✓✓

Provide simple API for serving batch and real-time requests2 @GreatAI.create ✓✓

For reproducibility, use standard runtime and configuration files2 utilities.ConfigFile, Dockerfile ✓

Integration with existing data infrastructure2 GridFS, S3 support ✓✓

Select ML solution fully integrated with databases2 MongoDB, PostgreSQL support ✓✓

Querying, visualising and understanding metrics and event logging2 Dashboard, Traces API ✓✓

Measure accuracy of deployed model to ensure data drifts are noticed2 Feedback API ✓

Apply automation to trigger model retraining2 Feedback API ∼
Allow experimentation with the inference code3 Development mode & auto-reload ✓✓

Keep the model and its documentation together3 Dashboard and Swagger ✓✓

Parallelise feature extraction3 parallel_map ✓✓

Cache predictions3 @GreatAI.create ✓✓

Allow robustly composing inference functions3 All decorators support async ✓✓

Implement standard schemas for common prediction tasks3 views ✓
1 SE4ML best practices from Table 2 of [1], and Table 1 of [16].
2 Reported state-of-the-art and state-of-practice practices from Tables 2, 3, and 4 of [17].
3 Additional software engineering best practices applicable to AI/ML deployments encountered while designing and using our framework.

TABLE III
TECHNOLOGY ACCEPTANCE MODEL SURVEY RESULTS PER VARIABLE.

THE INPUT VALUES RANGE FROM 1 TO 7. SAMPLE SIZE = 10.

.

Perceived Perceived Intention
ease of use utility to use

Median 5.8 6.4 6.3
Mean 5.5 6.1 6.0

Standard deviation 1.0 0.9 1.3
Cronbach’s alpha 0.77 0.88 0.95

for the Hungarian State Treasury and two people building an
upcoming digital bank’s core services. Image processing con-
texts were illustrated by professionals predicting Sun activity
at the European Space Agency and different ones creating
pose-recognition at a startup for people with disabilities using
3D cameras. Other activities of interviewees included investi-

gating companies’ AI use as part of due diligence processes
and intrusion detection from network packet traces.

Stemming from this diversity, these semi-structured inter-
views could be expected to provide valuable insights into
the generalisability of our framework design. The method-
ology of Section III-B was followed by applying reflective
journaling and thematic analysis. After labelling each aspect
of the feedback, and two iterations of merging redundant or
related topics, we ended up with three overarching themes:
Functionality, API, and Responsibility to adopt. As we will
soon see, these correspond to the perceived utility, perceived
ease of use, and intention to use components of TAM.

a) Functionality: The framework’s feature-set was com-
plimented during most interviews, with one participant noting
that, although the overall number of features is relatively small,
many are utilised in most cases. Similarly, the utilities



submodule was appreciated for helping greatly in the interview
task, but non-NLP researchers noted its likely inadequacy for
their area. Still, they would like to see similar modules for their
fields because it would save them from a lot of copy-pasting.

The effortless parallel feature extraction and large file han-
dling support were highlighted multiple times for the reason
that the particular interviewees had not encountered other
libraries providing these features. Other concrete features, such
as the searchable exceptions column in the Dashboard’s table
and the feedback mechanism, were also popular. One profes-
sional highlighted the latter for coercing users to consider
a human-in-the-loop approach which was said to be often
expected in modern systems.

When reflecting on the framework from a bird’s eye view,
the generality and extensibility of the API were emphasised.
As explained by a senior engineer, this is mainly because once
you commit to using it, it is important not to find yourself at
a dead end for a specific use case forcing you to look for
a different library. However, two participants also noted that
for complete generality, MATLAB support would be necessary.
Regarding non-functional features, private hosting (especially
in banking and government), open-source auditability, and
good scalability (by means of an external database) were the
top subjects of praise.

b) API: Regarding the surface through which clients
interact with the library, the feedback is also positive but more
nuanced. Many participants liked that the functions’ behaviour
is easy to guess from their names. The decorator syntax caused
minor confusion but consulting the documentation solved the
issues in all three cases. The CLI app was appreciated for
having a close to trivial signature; the participant noted that she
strives to use as few CLI commands as feasible. Surprisingly,
even the practitioners with more data science background
appreciated the Docker support. Nonetheless, one expert had a
feature request for a configuration GUI because his colleagues
are used to handling MATLAB App Designer applications.

The recurring theme of the discussions focused on the
question of “How simple is too simple?”. The argument is that
an API cannot be simpler than the domain in which it exists.
More precisely, it can only be simpler at the cost of losing
transparency. Let us take the example of saving models using
save_model(). If a project is set up correctly, it either has
an initial configure() call to the storage provider backend,
or it has an appropriately named credentials file in the project’s
root, for instance, s3.ini or mongo.ini. Once set up, it is
trivial to use as long as we do not divert from the happy path.
However, if an issue arises, such as an upgrade or migration
of MongoDB, debugging the application is non-trivial for its
lack of transparency.

In other words, the average (cognitive) complexity is low
while the worst-case is as high — if not higher — than
without using save_model(). This proved to be somewhat
controversial. However, ultimately, optimising the happy path
of the AI/ML development lifecycle was deemed worthwhile
by the participants in most cases. With the argument that the
majority of the time spent during a project is spent on this

path anyway. However, this raises the question of who exactly
are the target users and who will fix arising issues?

c) Responsibility to adopt: The question of who is re-
sponsible for adoption of engineering practices came up in
many discussions. Various companies were mentioned that
for multiple years used to or still have an R&D department
consisting solely of data scientists. In one extreme case, the
staff was described as more than 30 data scientists and 0
other technical employees. In such a setup, it is unreasonable
to expect even professionals to have the capabilities and
focus to set up the required foundation for handling all best
practices. All but one interviewee verified this assumption.
They also referred to their previous projects, which usually
required many researchers and experts from various fields,
and too often, software engineers had not been prioritised
to be included. Adopting engineering best practices without
(sufficient) software engineers is difficult, even when using a
framework like ours.

E. Discussion

The overall takeaway from this is that most features were
well-received, and the high mean value of perceived utility
is credible. Also, perceived ease of use is relatively high,
especially given the short time for participants to become
acquianted with the framework. Thus, we can give a positive
answer to the first two parts of RQ4 (utility and ease of use).

Regarding generalisability, the criticism of being NLP-
centric is justified: the initial scope of the proof-of-principle
framework was limited to this domain. Nonetheless, learning
the experts’ opinion that they wish to have a similarly specific
solution to their problem contexts is reassuring because it
proves that the API is not only generalisable but is expected to
be generalised. At the same time, it is crucial to admit that no
one-size-fits-all solution can exist for such a diverse domain.
Therefore, allowing customisability and easy extension of the
system must remain central design questions. Combining the
high value of intention to use from Table III, the generally
positive feedback regarding the library’s added value, and the
numerous feature requests for fitting it to specific needs, we
conclude that with appropriate adaptations, generalisation is
possible.

F. Threats to validity

The main threat to validity of our work lies in the small
sample size of practitioners that have participated in our
evaluation, and in the limited duration. This threat is alleviated
to some extent by the in-depth nature of the interviews.
Still, user studies over a longer period of time, with more
participants and a wider variety of tasks, would surely be
valuable future work.

VI. CONCLUSION

Transitioning from prototypes to production-ready AI/ML
deployments is a source of adversity for small and large en-
terprises alike. Even though several frameworks and platforms
exist for facilitating this step, surveys on the execution of best



practices continue to expose the industry’s shortcomings. This
signals that existing libraries are underutilised, which may lead
to poor deployments that underperform or develop issues that
go unnoticed and might inflict societal harm.

We hypothesised that presenting a library which implements
best practices and is also optimised for ease of adoption
could help increase the overall quality of industrial AI/ML
deployments. To test this, we designed and implemented a
framework based on the principles of cognitive science and
the prior art of software design. Subsequently, we tested and
refined the design in an iterative process.

During the refinement of the framework, six previously
unaddressed AI/ML deployment best practices were identified.
Including these, the framework fully implements 17 best prac-
tices while it provides support for another 16. We validated the
value provided by implementing or helping to implement these
practices through interviews with ten industry professionals
from various subfields.

The interview participants completed two questionnaires,
the results of one of which indicated that using our framework
in an example task increased the number of implemented
best practices, on average, by 49% compared with their
latest project. We also calculated the technology acceptance;
a significantly strong correlation was measured between the
perceived ease of use, the perceived utility and the intention
to use dimensions. Overall, proving that ease of use is just as
important as core functionality when adopting AI deployment
frameworks.

The open-ended exit interviews revealed that value can be
derived from the library even in its current form and that
the API’s design has the opportunity to generalise to other
fields of industrial AI/ML applications. However, they also
highlighted that adoption issues do not necessarily come from
a lack of willingness but a lack of awareness. Even if the
returns achievable from good deployments are well worth
the investment. Nevertheless, this value proposition needs to
be conveyed and proved to data science professionals and
technical decision-makers.

While our framework is useful in its own right, its design
could potentially also be used to inspire improvements of the
existing frameworks, such as those discussed in Section II.

Source code and documentation of our framework are
available under an open source license at https://github.
com/schmelczer/great-ai. Full documentation, including user
guides, a tutorial, and several example applications are avail-
able at https://great-ai.scoutinscience.com/.
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