

Software Risk Management in Practice:

Shed Light on Your Software Product

Jens Knodel1, Matthias Naab1, Eric Bouwers2, Joost Visser23

1Fraunhofer Institute for Experimental Software

Engineering (IESE)

 Kaiserslautern, Germany

{jens.knodel, matthias.naab}@iese.fraunhofer.de

2Software Improvement Group

(SIG)

Amsterdam, The Netherlands

{e.bouwers, j.visser}@sig.eu

3Radboud University

Nijmegen, The Netherlands

j.visser@cs.ru.nl

Abstract—You can’t control what you can’t measure. And you

can’t decide if you are wandering around in the dark. Risk

management in practice requires shedding light on the internals

of the software product in order to make informed decisions.

Thus, in practice, risk management has to be based on

information about artifacts (documentation, code, and

executables) in order to detect (potentially) critical issues.

This tutorial presents experiences from industrial cases world-

wide on qualitative and quantitative measurement of software

products. We present our lessons learned as well as consolidated

experiences from practice and provide a classification scheme of

applicable measurement techniques.

Participants of the tutorial receive an introduction to the

techniques in theory and then apply them in practice in

interactive exercises. This enables participants to learn how to

shed light on the internals of their software and how to make risk

management decisions efficiently and effectively.

I. KEY MESSAGES OF THE TUTORIAL

This full-day tutorial “Software Risk Management in

Practice” is highly interactive with group exercises and

discussions. It conveys the following key messages:

 Evaluate your software product – early and regularly!

 Select appropriate methods and allocate effort based

on goals and context

 Be aware what you measure and which criteria you use

 Be quantitative where possible, qualitative otherwise

 Use measurements to support decisions

 Carefully interpret results and put them into action

This tutorial takes a practical perspective on risk

management derived from experiences and lessons learned in

various projects with industry.

 Practitioners learn how to apply theory on software

product evaluation in practice.

 Students learn about the state of the practice and get data

to guide them in their subsequent research.

 Researchers gain insights into the gap between state of

the art and state of the practice and find new research

challenges.

More information about the tutorial can be found at:

www.sig.eu/Research/SoftwareRiskManagementInPractice

II. ABOUT THE TUTORIAL

Format: At the start of the tutorial, we collect expectations

and previous knowledge of the participants. The introductory

part of the presentation with some theoretical foundations are

aligned with the experiences and the background of the

participants. The topic is introduced by discussing practical

questions. Further examples are discussed and selected tasks

are conducted together with the participants in interactive

sessions. This also motivates the exchange of experiences

among the participants.

Material: All participants receive an electronic copy of the

slides in PDF format.

Intended audience: We aim at having 15-25 participants

from different topic areas (e.g., software and system

architecture, maintenance and evolution) from industry (e.g.,

system or service providers, service integrators, tool

developers, service users) and academia (maintenance,

evolution, or architecture research).

III. STRUCTURE OF THE TUTORIAL

 Introduction

Introduction of speakers and participants and their

respective background

 Overall Context

Software product lifecycle (requirements - architecture -

implementation – executable)

Introduction of goals, motivation, and related terminology

 Measuring Requirements

Concern Elicitation Check

 Measuring Architecture
Solution Adequacy Assessment , Documentation

Assessment, Compliance/Distance Assessment

 Measuring Implementation
Maintainability model, Code quality assessment,

models for other ISO 25010 aspects

 Measuring Executables

SPR models versus live measurements

978-1-4799-8469-5/15/$31.00 c© 2015 IEEE SANER 2015, Montréal, Canada592

 Assessment Project Management
Initiation, set-up, outcome, follow-up

 Wrap-up
How do you plan to apply the knowledge gained today?

IV. DIMENSIONS OF SOFTWARE PRODUCT EVALUATION

A software measurement technique defines measurement

instructions to mitigate (detect) technical risks in a software (-

intensive) product. It is applied on one evaluation object (or on

several) and is measured against a baseline

Figure 1: Dimensions of Software Product Evaluation

Software product evaluation methods can be categorized along

at least three dimensions Figure 1.

 Evaluation Object: The most important dimensions is the

object under evaluation. We can evaluate requirements,

architecture, implementation, or the final executable

software system.

 Evaluation Criteria: The criteria against which the object

is evaluated can range from universal criteria (applicable

in the same form to any object, e.g. ISO Standard) to

individual criteria (tuned specifically to the object under

evaluation, e.g. meeting product-specific performance

requirements).

 Risk Cause: Risks that can be detected with evaluation

can stem from different origins. Possible risk causes

include the software system itself, technologies used in its

construction, and limitations in the capabilities of humans

dealing with the system (e.g. users, developers,

maintainers, or operators).

Software product evaluation methods can be categorized in

the space defined by these dimensions. Figure 2 shows a

sample of product evaluation methods developed by

Fraunhofer IESE and SIG. Table 1 explains the abbreviations

used.

Figure 2: Example Software Product Evaluation Methods

Table 1: Abbreviations Explained

Term Explanation

ADA Architecture Documentation Assessment

DQM Design Quality Metrics

EE Energy Effeciency Model

IR Issue Resolution Time

LiSCIA Lightweight Sanity Check for Implemented

Architectures

MM Maintainability Model

RI Requirements Inspection

RQM Requirements Quality Metrics

SAA Solution Adequacy Assessment

SAD C Software Architecture Document Check

SPR Security, Performance, Reliability model

TRR Technical Risk Reviews

Risk

Cause

Software System

Technologies in Use
(Misusage/Known Pitfalls)

Human Capabilities

Evaluation

Criteria

Evaluation

Object

Requirements

Architecture

Implementation

Executable

Universal Domain Organization Individual

Requirements

Architecture

Implementation

Executable

Product Technology
Human

Capability

SAD C

Combined

SPR

TRR

LiSCIA

SPR LiSCIA

SPR

EE

MMIR

RQM RQM

DQM

DQM

RI RI

RI

ADA ADA

ADA

SAA

593

V. ABOUT THE PRESENTERS

Fraunhofer IESE and the Software Improvement Group

(SIG) join their competencies for this tutorial. Previous

tutorials of Fraunhofer IESE and SIG are combined and aligned

to ensure a more comprehensive perspective on practical risk

management.

A. Fraunhofer IESE

Dr. Jens Knodel and Dr. Matthias Naab are software

architects. Their expertise – consolidated experiences and

lessons learned from more than 50 projects with industry in

domains like Embedded Systems, Information Systems, and

Smart Ecosystems – lies in the definition, improvement, and

assessment of software architectures.

Jens and Matthias are senior researchers at the Fraunhofer

Institute for Experimental Software Engineering IESE in

Kaiserslautern, Germany. They are responsible for project

management, method development, and technology transfer in

research and industry projects and are leading research

activities in the area of software and systems architecture at

IESE.

In addition, Jens Knodel, and Matthias Naab regularly

coach practitioners on software architecture. They also give

tutorials at conferences and hold lectures at the Fraunhofer

Academy and at the University of Kaiserslautern on the same

topics. They are the authors of more than 50 scientific, peer-

reviewed publications in the areas of software architecture,

maintenance, and evolution.

B. Prior Tutorials Given by the Fraunhofer IESE Presenters

 Conference “Software Engineering 2010”, Paderborn,

Germany

 Conference “CSMR 2011”, Oldenburg, Germany

 Conference “Software Engineering 2013”, Aachen,

Germany (30 participants)

 Conference “Software Engineering 2014”, Kiel, Germany

(25 participants)

 Conference “WICSA 2014”, Sydney, Australia (16

participants)

 “Seminar Software Architecture” – Fraunhofer Academy,

Kaiserslautern, Germany, seminar held twice per year

 For many of our industrial customers on several occasions

C. Software Improvement Group

Eric Bouwers is a qualified teacher and technical consultant at

the Software Improvement Group in Amsterdam, The

Netherlands. He is interested in how software metrics can assist

in quantifying the architectural aspects of software quality. In

the past six years, this interest has led to the design, evaluation,

and application of two architecture-level metrics that are now

embedded in a benchmark-based model for software quality.

Joost Visser is head of research at the Software

Improvement Group (SIG) in Amsterdam, The Netherlands,

and holds a position as professor of large-scale software

systems at Radboud University Nijmegen, The Netherlands. At

the SIG, Joost is responsible for innovation of tools and

services, academic relations, internship coordination, and

general research. In the past eight years, he has been involved

in the development, evaluation, and application of a

benchmark-based model for software quality.

D. Prior Tutorials Given by the SIG Presenters

 Name: Software Measurement Pitfalls & Best Practices,

Given at the 35th International Conference on Software

Engineering (ICSE 2013),

 Integration of architecture measurement as part of the

Software Architecture course of TU Delft in the past two

years (see http://avandeursen.com/2013/12/30/teaching-

software-architecture-with-github/).

 Tailored measurement workshops about software

(architecture) measurement for different industrial

customers.

594

